mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

A surprising fact about quadrilaterals

 2020-05-15 
This is a post I wrote for The Aperiodical's Big Lock-Down Math-Off. You can vote for (or against) me here until 9am on Sunday...
Recently, I came across a surprising fact: if you take any quadrilateral and join the midpoints of its sides, then you will form a parallelogram.
The blue quadrilaterals are all parallelograms.
The first thing I thought when I read this was: "oooh, that's neat." The second thing I thought was: "why?" It's not too difficult to show why this is true; you might like to pause here and try to work out why yourself before reading on...
To show why this is true, I started by letting \(\mathbf{a}\), \(\mathbf{b}\), \(\mathbf{c}\) and \(\mathbf{d}\) be the position vectors of the vertices of our quadrilateral. The position vectors of the midpoints of the edges are the averages of the position vectors of the two ends of the edge, as shown below.
The position vectors of the corners and the midpoints of the edges.
We want to show that the orange and blue vectors below are equal (as this is true of opposite sides of a parallelogram).
We can work these vectors out: the orange vector is$$\frac{\mathbf{d}+\mathbf{a}}2-\frac{\mathbf{a}+\mathbf{b}}2=\frac{\mathbf{d}-\mathbf{b}}2,$$ and the blue vector is$$\frac{\mathbf{c}+\mathbf{d}}2-\frac{\mathbf{b}+\mathbf{c}}2=\frac{\mathbf{d}-\mathbf{b}}2.$$
In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram.

Going backwards

Even though I now saw why the surprising fact was true, my wondering was not over. I started to think about going backwards.
It's easy to see that if the outer quadrilateral is a square, then the inner quadrilateral will also be a square.
If the outer quadrilateral is a square, then the inner quadrilateral is also a square.
It's less obvious if the reverse is true: if the inner quadrilateral is a square, must the outer quadrilateral also be a square? At first, I thought this felt likely to be true, but after a bit of playing around, I found that there are many non-square quadrilaterals whose inner quadrilaterals are squares. Here are a few:
A kite, a trapezium, a delta kite, an irregular quadrilateral and a cross-quadrilateral whose innner quadrilaterals are all a square.
There are in fact infinitely many quadrilaterals whose inner quadrilateral is a square. You can explore them in this Geogebra applet by dragging around the blue point:
As you drag the point around, you may notice that you can't get the outer quadrilateral to be a non-square rectangle (or even a non-square parallelogram). I'll leave you to figure out why not...
                  ×1      
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
Nice post! Just a minor nitpick, I found it weird that you say "In the same way, we can show that the other two vectors that make up the inner quadrilateral are equal, and so the inner quadrilateral is a parallelogram."
This is true but it's not needed (it's automatically true), you have in fact already proved that this is a parallelogram, by proving that two opposite sides have same length and are parallel (If you prove that the vectors EF and GH have the same coordinates, then EFHG is a parallelogram.)
Vivien
   ×1         ×1     Reply
mscroggs.co.uk is interesting as far as MATHEMATICS IS CONCERNED!
DEB JYOTI MITRA
            ×1     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "g" then "r" then "a" then "p" then "h" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

trigonometry rhombicuboctahedron captain scarlet recursion football fence posts bodmas fonts matrix of minors signorini conditions menace edinburgh bempp estimation oeis wave scattering mathsjam crossnumber dragon curves stickers triangles manchester science festival finite element method cambridge crochet harriss spiral matrices error bars christmas card stirling numbers determinants convergence cross stitch pythagoras puzzles the aperiodical rugby dataset data visualisation matrix multiplication binary noughts and crosses zines speed interpolation numbers gerry anderson sport logs pascal's triangle dinosaurs martin gardner accuracy gaussian elimination machine learning standard deviation programming mathslogicbot errors anscombe's quartet mathsteroids royal institution live stream squares databet arithmetic boundary element methods manchester chebyshev hats big internet math-off flexagons chalkdust magazine golden spiral world cup reuleaux polygons newcastle inverse matrices people maths go ternary sound plastic ratio pi approximation day datasaurus dozen pizza cutting hyperbolic surfaces bubble bobble data statistics radio 4 phd electromagnetic field raspberry pi youtube approximation geogebra quadrilaterals palindromes coins dates 24 hour maths books turtles matrix of cofactors geometry draughts pi realhats reddit game show probability craft hexapawn inline code final fantasy news map projections polynomials a gamut of games logo talking maths in public folding tube maps london underground curvature preconditioning london advent calendar chess numerical analysis tmip folding paper graphs pac-man javascript sobolev spaces asteroids finite group probability mean simultaneous equations royal baby computational complexity braiding game of life matt parker hannah fry latex countdown weak imposition exponential growth weather station tennis video games ucl national lottery golden ratio light frobel propositional calculus misleading statistics gather town fractals european cup python games guest posts sorting platonic solids logic nine men's morris runge's phenomenon correlation wool php christmas graph theory

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024