mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Tube map Platonic solids

 2012-10-06 
This is the first post in a series of posts about tube map folding.
This week, after re-reading chapter two of Alex's Adventures in Numberland (where Alex learns to fold business cards into tetrahedrons, cubes and octahedrons) on the tube, I folded two tube maps into a tetrahedron:
Following this, I folded a cube, an octahedron and an icosahedron:
The tetrahedron, icosahedron and octahedron were all made in the same way, as seen in Numberland: folding the map in two, so that a pair of opposite corners meet, then folding the sides over to make a triangle:
In order to get an equilateral triangle at this point, paper with sides in a ratio of 1:√3 is required. Although it is not exact, the proportions of a tube map are close enough to this to get an almost equilateral triangle. Putting one of these pieces together with a mirror image piece (one where the other two corners were folded together at the start) gives a tetrahedron. The larger solids are obtained by using a larger number of maps.
The cube—also found in Numberland—can me made by placing two tube maps on each other at right angles and folding over the extra length:
Six of these pieces combine to give a cube.
Finally this morning, with a little help from the internet, I folded a dodecahedron, thus completing all the Platonic solids:
To spread the joy of folding tube maps, each time I take the tube, I am going to fold a tetrahedron from two maps and leave it on the maps when I leave the tube. I started this yesterday, leaving a tetrahedron on the maps at South Harrow. In the evening, it was still there:
Do you think it will still be there on Monday morning? How often do you think I will return to find a tetrahedron still there? I will be keeping a tetrahedron diary so we can find out the answers to these most important questions...
This is the first post in a series of posts about tube map folding.
Next post in series
Tube map Platonic solids, pt. 2

Similar posts

Tube map Platonic solids, pt. 3
Tube map Platonic solids, pt. 2
Tube map kaleidocycles
Tube map stellated rhombicuboctahedron

Comments

Comments in green were written by me. Comments in blue were not written by me.
New test comment please ignore
Matthew
×1   ×1   ×1   ×2   ×1     Reply
Test comment please ignore
Matthew
×1   ×1   ×1   ×2   ×1     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "tcesib" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Jul 2020

Happy √3e3τ-87 Approximation Day!

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

the aperiodical logs ucl game of life nine men's morris reddit european cup approximation accuracy php pac-man triangles logic javascript dates arithmetic a gamut of games signorini conditions data visualisation determinants rhombicuboctahedron matt parker programming pizza cutting folding tube maps ternary christmas finite element method reuleaux polygons error bars gaussian elimination numerical analysis platonic solids machine learning squares latex realhats plastic ratio royal baby curvature computational complexity map projections asteroids christmas card rugby tmip chess propositional calculus puzzles tennis mathsjam national lottery craft martin gardner hats statistics menace books world cup wool hannah fry graphs harriss spiral chalkdust magazine bempp palindromes london mathsteroids matrices mathslogicbot speed estimation probability exponential growth phd final fantasy cambridge sound geometry misleading statistics captain scarlet sorting matrix multiplication wave scattering pi quadrilaterals light draughts football hexapawn sport graph theory coins stickers fractals sobolev spaces flexagons weak imposition geogebra manchester science festival inverse matrices boundary element methods advent calendar people maths matrix of minors python game show probability manchester pi approximation day golden ratio bodmas dataset folding paper talking maths in public trigonometry data weather station golden spiral preconditioning big internet math-off convergence simultaneous equations chebyshev cross stitch inline code raspberry pi polynomials games electromagnetic field twitter video games london underground news pythagoras countdown dragon curves interpolation bubble bobble frobel gerry anderson go radio 4 binary braiding matrix of cofactors noughts and crosses royal institution oeis

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020