mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2012-11-02 
This is the second post in a series of posts about tube map folding.
Following my previous post, I did a little more folding.
The post was linked to on Going Underground's Blog where it received this comment:
In response to which I made this from 48 tube maps:
Also since the last post, I left 49 tetrahedrons at tube stations in a period of just over two weeks. Here's a pie chart showing which stations I left them at:
Of these 49, only three were still there the next time I passed through the station:
Due to the very low recapture rate, little more analysis can be done. Although I do wonder where they all ended up. Do you work at one of those stations and threw some away? Or did you pass through a station and pick one up? Or was it aliens and ghosts?
For my next trick, I want to gather a team of people, pick a day, and leave one at every station that day. If you want to join me, comment on this post, tweet me or comment on reddit and we can formulate a plan. Including your nearest station(s) in your message will help us sort out who takes which stations...
Previous post in series
This is the second post in a series of posts about tube map folding.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "e" then "q" then "u" then "a" then "t" then "i" then "o" then "n" in the box below (case sensitive):
 2012-10-06 
This is the first post in a series of posts about tube map folding.
This week, after re-reading chapter two of Alex's Adventures in Numberland (where Alex learns to fold business cards into tetrahedrons, cubes and octahedrons) on the tube, I folded two tube maps into a tetrahedron:
Following this, I folded a cube, an octahedron and an icosahedron:
The tetrahedron, icosahedron and octahedron were all made in the same way, as seen in Numberland: folding the map in two, so that a pair of opposite corners meet, then folding the sides over to make a triangle:
In order to get an equilateral triangle at this point, paper with sides in a ratio of 1:√3 is required. Although it is not exact, the proportions of a tube map are close enough to this to get an almost equilateral triangle. Putting one of these pieces together with a mirror image piece (one where the other two corners were folded together at the start) gives a tetrahedron. The larger solids are obtained by using a larger number of maps.
The cube—also found in Numberland—can me made by placing two tube maps on each other at right angles and folding over the extra length:
Six of these pieces combine to give a cube.
Finally this morning, with a little help from the internet, I folded a dodecahedron, thus completing all the Platonic solids:
To spread the joy of folding tube maps, each time I take the tube, I am going to fold a tetrahedron from two maps and leave it on the maps when I leave the tube. I started this yesterday, leaving a tetrahedron on the maps at South Harrow. In the evening, it was still there:
Do you think it will still be there on Monday morning? How often do you think I will return to find a tetrahedron still there? I will be keeping a tetrahedron diary so we can find out the answers to these most important questions...
This is the first post in a series of posts about tube map folding.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
New test comment please ignore
Matthew
×2   ×1   ×3   ×2   ×2     Reply
Test comment please ignore
Matthew
×1   ×1   ×2   ×2   ×2     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "naidem" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

logo tmip advent calendar estimation bempp mean frobel chebyshev anscombe's quartet misleading statistics manchester science festival stickers javascript oeis signorini conditions tennis gerry anderson live stream gaussian elimination light the aperiodical raspberry pi rugby machine learning ucl recursion zines reddit boundary element methods geogebra crochet london matrix multiplication data visualisation correlation preconditioning pizza cutting weather station dataset people maths datasaurus dozen exponential growth 24 hour maths hats go graph theory pythagoras pi approximation day golden spiral simultaneous equations puzzles royal institution game of life mathslogicbot speed craft logic cross stitch dragon curves binary databet world cup hannah fry latex statistics youtube sport newcastle pi captain scarlet flexagons programming probability video games palindromes polynomials computational complexity numbers quadrilaterals standard deviation guest posts platonic solids turtles countdown folding paper bubble bobble mathsteroids european cup a gamut of games inline code python national lottery london underground inverse matrices noughts and crosses chess fractals edinburgh manchester royal baby plastic ratio golden ratio propositional calculus cambridge dates data big internet math-off harriss spiral chalkdust magazine game show probability errors approximation trigonometry braiding books mathsjam christmas talking maths in public graphs interpolation curvature wave scattering determinants fonts football triangles news dinosaurs finite group sobolev spaces folding tube maps bodmas finite element method matrix of cofactors hyperbolic surfaces reuleaux polygons matt parker games map projections geometry logs matrix of minors matrices martin gardner sorting fence posts realhats radio 4 nine men's morris numerical analysis christmas card asteroids arithmetic pascal's triangle pac-man electromagnetic field stirling numbers wool accuracy sound phd error bars squares final fantasy rhombicuboctahedron crossnumber weak imposition coins php ternary menace draughts hexapawn gather town runge's phenomenon convergence

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024