mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Not Roman numerals

The letters \(I\), \(V\) and \(X\) each represent a different digit from 1 to 9. If
$$VI\times X=VVV,$$
what are \(I\), \(V\) and \(X\)?

Show answer

Backwards fours

If A, B, C, D and E are all unique digits, what values would work with the following equation?
$$ABCCDE\times 4 = EDCCBA$$

Show answer

10 December

How many zeros does 1000! (ie 1000 × 999 × 998 × ... × 1) end with?

Show answer

17 December

In March, I posted the puzzle One Hundred Factorial, which asked how many zeros 100! ends with.
What is the smallest number, n, such that n! ends with 50 zeros?

One hundred factorial

How many zeros does \(100!\) end with?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

Sunday Afternoon Maths LXV

Cryptic crossnumber #1
Breaking Chocolate
Square and cube endings

List of all puzzles

Tags

geometry bases multiplication integers clocks colouring trigonometry complex numbers spheres symmetry number books probability remainders sequences parabolas chalkdust crossnumber balancing quadratics time triangle numbers games arrows surds averages advent taxicab geometry people maths prime numbers percentages digits sum to infinity rugby crossnumbers logic mean algebra polygons square numbers integration numbers partitions routes ave calculus dodecagons ellipses sport star numbers speed proportion dice cryptic clues factorials multiples hexagons shape means sums volume area differentiation shapes grids 3d shapes graphs odd numbers dates square roots squares cards chocolate indices wordplay unit fractions coins probabilty crosswords floors scales palindromes rectangles perimeter fractions triangles chess cube numbers factors cryptic crossnumbers addition irreducible numbers angles folding tube maps christmas doubling regular shapes money menace division coordinates functions planes pascal's triangle circles 2d shapes lines perfect numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2019