# Puzzles

## Archive

Show me a Random Puzzle**Most Recent Collections**

#### Sunday Afternoon Maths LIX

Turning SquaresElastic Numbers

Square Pairs

#### Sunday Afternoon Maths LVIII

Factorial PatternPlacing Plates

#### Advent Calendar 2016

#### Sunday Afternoon Maths LVII

Largest Odd FactorsList of All Puzzles

## Tags

time geometry 2d shapes 3d shapes numbers spheres trigonometry complex numbers algebra lines graphs coordinates odd numbers fractions differentiation calculus folding tube maps ellipses triangle numbers money bases triangles squares area square numbers chess probability circles averages speed sport multiples dates factors parabolas functions logic cards games people maths shape prime numbers irreducible numbers probabilty angles proportion dice integration sum to infinity dodecagons hexagons multiplication factorials coins shapes regular shapes colouring grids floors integers rugby crosswords percentages digits sums rectangles clocks menace routes taxicab geometry remainders chalkdust crossnumber palindromes sequences means unit fractions division square roots surds doubling quadratics indices symmetry planes volume number partitions ave pascal's triangle mean advent arrows## Square Pairs

Source: Maths Jam

Can you order the integers 1 to 16 so that every pair of adjacent numbers adds to a square number?

For which other numbers \(n\) is it possible to order the integers 1 to \(n\) in such a way?

## 14 December

In July, I posted the Combining Multiples puzzle.

Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

## Combining Multiples

In each of these questions, positive integers should be taken to include 0.

1. What is the largest number that cannot be written in the form \(3a+5b\), where \(a\) and \(b\) are positive integers?

2. What is the largest number that cannot be written in the form \(3a+7b\), where \(a\) and \(b\) are positive integers?

3. What is the largest number that cannot be written in the form \(10a+11b\), where \(a\) and \(b\) are positive integers?

4. Given \(n\) and \(m\), what is the largest number that cannot be written in the form \(na+mb\), where \(a\) and \(b\) are positive integers?

## Subsum

1) In a set of three integers, will there always be two integers whose sum is even?

2) How many integers must there be in a set so that there will always be three integers in the set whose sum is a multiple of 3?

3) How many integers must there be in a set so that there will always be four integers in the set whose sum is even?

4) How many integers must there be in a set so that there will always be three integers in the set whose sum is even?

## Santa

Each of the letters D, A, Y, S, N, T, B, R and E represents a different non-zero digit. The following sum is true:

$$
\begin{array}{cccccc}
D&A&D&D&Y\\
B&E&A&R&D&+\\
\hline
S&A&N&T&A
\end{array}
$$
This has a unique solution, but I haven't found a way to find the solution without brute force. This less insightful sum is also true with the same values of the letters (and should allow you to find the values of the letters using logic alone):

$$
\begin{array}{ccccc}
R&A&T&S\\
N&E&R&D&+\\
\hline
S&A&N&E
\end{array}
$$