mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Archive

Show me a random puzzle
 Most recent collections 

Tags

books christmas coins spheres geometry digits division routes dice triangle numbers hexagons squares dodecagons means scales menace probability lines coordinates area wordplay triangles irreducible numbers shapes odd numbers surds mean folding tube maps quadratics shape polygons partitions indices percentages volume floors planes complex numbers prime numbers cryptic crossnumbers symmetry chalkdust crossnumber multiplication calculus sequences time perimeter graphs regular shapes colouring factors grids doubling people maths integers number multiples algebra palindromes rectangles factorials ellipses functions crosswords numbers square roots probabilty circles square numbers 2d shapes pascal's triangle chocolate sum to infinity unit fractions advent cryptic clues games parabolas proportion averages fractions star numbers cards angles differentiation integration arrows crossnumbers chess cube numbers perfect numbers balancing money clocks sport sums speed rugby ave taxicab geometry logic dates bases trigonometry addition remainders 3d shapes

Archive

Show me a random puzzle
▼ show ▼

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Square pairs

Source: Maths Jam
Can you order the integers 1 to 16 so that every pair of adjacent numbers adds to a square number?
For which other numbers \(n\) is it possible to order the integers 1 to \(n\) in such a way?

Show answer

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

Combining multiples

In each of these questions, positive integers should be taken to include 0.
1. What is the largest number that cannot be written in the form \(3a+5b\), where \(a\) and \(b\) are positive integers?
2. What is the largest number that cannot be written in the form \(3a+7b\), where \(a\) and \(b\) are positive integers?
3. What is the largest number that cannot be written in the form \(10a+11b\), where \(a\) and \(b\) are positive integers?
4. Given \(n\) and \(m\), what is the largest number that cannot be written in the form \(na+mb\), where \(a\) and \(b\) are positive integers?

Show answer & extension

Subsum

1) In a set of three integers, will there always be two integers whose sum is even?
2) How many integers must there be in a set so that there will always be three integers in the set whose sum is a multiple of 3?
3) How many integers must there be in a set so that there will always be four integers in the set whose sum is even?
4) How many integers must there be in a set so that there will always be three integers in the set whose sum is even?

Show answer & extension

Santa

Each of the letters D, A, Y, S, N, T, B, R and E represents a different non-zero digit. The following sum is true:
$$ \begin{array}{cccccc} D&A&D&D&Y\\ B&E&A&R&D&+\\ \hline S&A&N&T&A \end{array} $$
This has a unique solution, but I haven't found a way to find the solution without brute force. This less insightful sum is also true with the same values of the letters (and should allow you to find the values of the letters using logic alone):
$$ \begin{array}{ccccc} R&A&T&S\\ N&E&R&D&+\\ \hline S&A&N&E \end{array} $$

Show answer

© Matthew Scroggs 2019