Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension


Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles


graphs volume cryptic clues people maths doubling spheres digits percentages time odd numbers angles crossnumber probabilty range circles scales tiling means complex numbers star numbers perimeter surds addition ave clocks money regular shapes folding tube maps 3d shapes routes dice arrows integers products colouring elections quadratics polygons differentiation menace division sum to infinity mean proportion taxicab geometry square roots parabolas calculus symmetry fractions dominos perfect numbers sequences dodecagons indices triangles chocolate crosswords triangle numbers squares the only crossnumber rugby christmas pascal's triangle number multiples floors remainders cards prime numbers factorials rectangles area hexagons multiplication gerrymandering grids planes chalkdust crossnumber chess lines geometry dates sums books factors median bases unit fractions sport cryptic crossnumbers algebra coins 2d shapes shapes functions palindromes probability speed cube numbers averages numbers coordinates ellipses partitions square numbers wordplay integration logic shape advent games balancing digital clocks crossnumbers trigonometry irreducible numbers


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020