Integer part

Let \(\lfloor x\rfloor \) denote the integer part of \(x\) (eg. \(\lfloor 7.8\rfloor =7\)).
When are the following true:
a) \(\lfloor x+1\rfloor = \lfloor x\rfloor + 1\)
b) \(\lfloor nx\rfloor = n\lfloor x\rfloor\) (where \(n\) is an integer)
c) \(\lfloor x+y\rfloor = \lfloor x\rfloor +\lfloor y\rfloor \)
d) \(\lfloor xy\rfloor = \lfloor x\rfloor \lfloor y\rfloor \)

Show answer & extension


Show me a random puzzle
 Most recent collections 

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

Sunday Afternoon Maths LXV

Cryptic crossnumber #1
Breaking Chocolate
Square and cube endings

List of all puzzles


books christmas factorials bases numbers cryptic crossnumbers chalkdust crossnumber factors dice sequences angles graphs rugby routes 2d shapes clocks symmetry mean integration probability logic calculus shapes differentiation algebra shape spheres balancing chocolate dates averages proportion folding tube maps grids dodecagons fractions trigonometry odd numbers regular shapes cube numbers volume circles sum to infinity percentages wordplay crossnumbers chess taxicab geometry surds sums multiples functions money pascal's triangle area sport geometry cards division crosswords partitions means integers star numbers coordinates time addition indices arrows lines hexagons palindromes perimeter games cryptic clues complex numbers planes square numbers ellipses rectangles scales doubling triangles quadratics digits perfect numbers floors people maths coins speed polygons menace parabolas remainders multiplication irreducible numbers squares probabilty 3d shapes ave prime numbers triangle numbers colouring square roots advent number unit fractions


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2019