mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

An integral

Source: Alex Bolton (inspired by Book Proofs blog)
What is
$$\int_0^{\frac\pi2}\frac1{1+\tan^a(x)}\,dx?$$

Show hint


Show answer & extension

Find them all

Find all continuous positive functions, \(f\) on \([0,1]\) such that:
$$\int_0^1 f(x) dx=1\\ \mathrm{and }\int_0^1 xf(x) dx=\alpha\\ \mathrm{and }\int_0^1 x^2f(x) dx=\alpha^2$$

Show answer & extension

Integrals

$$\int_0^1 1 dx = 1$$
Find \(a_1\) such that:
$$\int_0^{a_1} x dx = 1$$
Find \(a_2\) such that:
$$\int_0^{a_2} x^2 dx = 1$$
Find \(a_n\) such that (for \(n>0\)):
$$\int_0^{a_n} x^n dx = 1$$

Show answer & extension

Double derivative

What is
$$\frac{d}{dy}\left(\frac{dy}{dx}\right)$$
when:
(i) \(y=x\)
(ii) \(y=x^2\)
(iii) \(y=x^3\)
(iv) \(y=x^n\)
(v) \(y=e^x\)
(vi) \(y=\sin(x)\)?

Show answer & extension

Differentiate this

$$f(x)=e^{x^{ \frac{\ln{\left(\ln{x}\right)}}{ \ln{x}}} }$$
Find \(f'(x)\).

Show answer

x to the power of x again

Let \(y=x^{x^{x^{x^{...}}}}\) [\(x\) to the power of (\(x\) to the power of (\(x\) to the power of (\(x\) to the power of ...))) with an infinite number of \(x\)s]. What is \(\frac{dy}{dx}\)?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

Sunday Afternoon Maths LXV

Cryptic crossnumber #1
Breaking Chocolate
Square and cube endings

List of all puzzles

Tags

number cube numbers multiples averages speed rugby probabilty 2d shapes sum to infinity wordplay ellipses volume unit fractions pascal's triangle circles time indices means lines proportion calculus differentiation quadratics folding tube maps advent sequences square roots routes planes shapes dodecagons hexagons sums square numbers sport dice dates christmas bases geometry multiplication crossnumbers ave scales perimeter integers chocolate polygons cards prime numbers cryptic clues menace cryptic crossnumbers triangles graphs chess triangle numbers palindromes angles taxicab geometry irreducible numbers area trigonometry floors coins integration fractions balancing mean games money odd numbers grids people maths probability numbers logic regular shapes parabolas partitions remainders squares arrows addition complex numbers 3d shapes crosswords coordinates shape factors algebra symmetry factorials functions books division percentages digits colouring chalkdust crossnumber rectangles perfect numbers clocks star numbers spheres doubling surds

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2019