mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Archive

Show me a random puzzle
 Most recent collections 

Tags

surds folding tube maps complex numbers money square numbers odd numbers crosswords functions numbers perimeter spheres unit fractions algebra hexagons sport rugby dodecagons balancing shapes palindromes irreducible numbers addition lines chocolate geometry coordinates floors parabolas doubling 3d shapes books chess factorials cards symmetry pascal's triangle volume prime numbers probabilty routes division digits polygons wordplay people maths planes factors proportion averages taxicab geometry remainders probability coins multiplication cryptic crossnumbers area quadratics differentiation mean fractions partitions advent triangle numbers scales christmas shape squares sequences time arrows angles ellipses square roots number menace indices chalkdust crossnumber cryptic clues multiples trigonometry circles sum to infinity dates dice integration star numbers triangles calculus means percentages clocks colouring crossnumbers sums logic ave integers games bases rectangles 2d shapes graphs speed perfect numbers cube numbers grids regular shapes

Archive

Show me a random puzzle
▼ show ▼

Find them all

Find all continuous positive functions, \(f\) on \([0,1]\) such that:
$$\int_0^1 f(x) dx=1\\ \mathrm{and }\int_0^1 xf(x) dx=\alpha\\ \mathrm{and }\int_0^1 x^2f(x) dx=\alpha^2$$

Show answer & extension

Odd and even outputs

Let \(g:\mathbb{N}\times\mathbb{N}\rightarrow\mathbb{N}\) be a function.
This means that \(g\) takes two natural number inputs and gives one natural number output. For example if \(g\) is defined by \(g(n,m)=n+m\) then \(g(3,4)=7\) and \(g(10,2)=12\).
The function \(g(n,m)=n+m\) will give an even output if \(n\) and \(m\) are both odd or both even and an odd output if one is odd and the other is even. This could be summarised in the following table:
\(n\)
oddeven
\(m\)oddevenodd
eoddeven
Using only \(+\) and \(\times\), can you construct functions \(g(n,m)\) which give the following output tables:
\(n\)
oddeven
\(m\)oddoddodd
eoddodd
\(n\)
oddeven
\(m\)oddoddodd
eoddeven
\(n\)
oddeven
\(m\)oddoddodd
eevenodd
\(n\)
oddeven
\(m\)oddoddodd
eeveneven
\(n\)
oddeven
\(m\)oddoddeven
eoddodd
\(n\)
oddeven
\(m\)oddoddeven
eoddeven
\(n\)
oddeven
\(m\)oddoddeven
eevenodd
\(n\)
oddeven
\(m\)oddoddeven
eeveneven
\(n\)
oddeven
\(m\)oddevenodd
eoddodd
\(n\)
oddeven
\(m\)oddevenodd
eoddeven
\(n\)
oddeven
\(m\)oddevenodd
eevenodd
\(n\)
oddeven
\(m\)oddevenodd
eeveneven
\(n\)
oddeven
\(m\)oddeveneven
eoddodd
\(n\)
oddeven
\(m\)oddeveneven
eoddeven
\(n\)
oddeven
\(m\)oddeveneven
eevenodd
\(n\)
oddeven
\(m\)oddeveneven
eeveneven

Show answer & extension

Tags: functions

Bézier curve

A Bézier curve is created as follows:
1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).
2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).
3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).
.
.
.
\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:
$$P_0=\left(0,1\right)$$ $$P_1=\left(0,0\right)$$ $$P_2=\left(1,0\right)$$

Show answer & extension

© Matthew Scroggs 2019