mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

24 December

There are six 3-digit numbers with the property that the sum of their digits is equal to the product of their digits. Today's number is the largest of these numbers.

Show answer

23 December

Arrange the digits 1-9 in a 3×3 square so the 3-digits numbers formed in the rows and columns are the types of numbers given at the ends of the rows and columns. The number in the first column is today's number.
a multiple of 4
a cube
a multiple of 3
today's numbera cubean odd number

Show answer

Tags: numbers, grids

22 December

In bases 3 to 9, the number 112 is: \(11011_3\), \(1300_4\), \(422_5\), \(304_6\), \(220_7\), \(160_8\), and \(134_9\). In bases 3, 4, 6, 8 and 9, these representations contain no digit 2.
There are two 3-digit numbers that contain no 2 in their representations in all the bases between 3 and 9 (inclusive). Today's number is the smaller of these two numbers.

Show answer

21 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the smallest number you can make with the digits in the red boxes.
+-= 7
÷ - ÷
+÷= 8
× × ×
+-= 7
=
12
=
5
=
28

Show answer

Tags: numbers, grids

20 December

The integers from 2 to 14 (including 2 and 14) are written on 13 cards (one number per card). You and a friend take it in turns to take one of the numbers.
When you have both taken five numbers, you notice that the product of the numbers you have collected is equal to the product of the numbers that your friend has collected. What is the product of the numbers on the three cards that neither of you has taken?

Show answer

18 December

The final round of game show starts with £1,000,000. You and your opponent take it in turn to take any value between £1 and £900. At the end of the round, whoever takes the final pound gets to take the money they have collected home, while the other player leaves with nothing.
You get to take an amount first. How much money should you take to be certain that you will not go home with nothing?

Show answer

Tags: numbers, games

17 December

Eve picks a three digit number then reverses its digits to make a second number. The second number is larger than her original number.
Eve adds her two numbers together; the result is 584. What was Eve's original number?

Show answer

16 December

Arrange the digits 1-9 in a 3×3 square so that: the median number in the first row is 6; the median number in the second row is 3; the mean of the numbers in the third row is 4; the mean of the numbers in the second column is 7; the range of the numbers in the third column is 2, The 3-digit number in the first column is today's number.
median 6
median 3
mean 4
today's numbermean 7range 2

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

tiling trigonometry dice probabilty pascal's triangle cube numbers median spheres sums mean the only crossnumber star numbers crossnumbers digits squares multiples dates triangle numbers dominos chalkdust crossnumber area digital clocks taxicab geometry products coins people maths colouring square numbers chess symmetry square roots games floors 2d shapes calculus coordinates unit fractions proportion time partitions logic ellipses lines algebra advent integration fractions integers polygons books perfect numbers addition complex numbers scales elections crossnumber averages planes rectangles factorials cryptic crossnumbers ave functions indices christmas folding tube maps bases wordplay triangles irreducible numbers numbers dodecagons routes 3d shapes number factors clocks parabolas probability sequences regular shapes cards angles money division remainders rugby shapes differentiation grids means odd numbers speed sport arrows doubling palindromes gerrymandering sum to infinity percentages chocolate range cryptic clues prime numbers perimeter hexagons graphs menace balancing volume quadratics multiplication surds shape crosswords circles geometry

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020