mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

10 December

For all values of \(x\), the function \(f(x)=ax+b\) satisfies
$$8x-8-x^2\leqslant f(x)\leqslant x^2.$$
What is \(f(65)\)?
Edit: The left-hand quadratic originally said \(8-8x-x^2\). This was a typo and has now been corrected.

Show answer

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?

Two tangents

Source: Reddit
Find a line which is tangent to the curve \(y=x^4-4x^3\) at 2 points.

Show answer

Between quadratics

Source: Luciano Rila (@DrTrapezio)
\(p(x)\) is a quadratic polynomial with real coefficients. For all real numbers \(x\),
$$x^2-2x+2\leq p(x)\leq 2x^2-4x+3$$
\(p(11)=181\). Find \(p(16)\).

Show answer

Bézier curve

A Bézier curve is created as follows:
1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).
2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).
3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).
.
.
.
\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:
$$P_0=\left(0,1\right)$$ $$P_1=\left(0,0\right)$$ $$P_2=\left(1,0\right)$$

Show answer & extension

Parabola

On a graph of \(y=x^2\), two lines are drawn at \(x=a\) and \(x=-b\) (for \(a,b>0\). The points where these lines intersect the parabola are connected.
What is the y-coordinate of the point where this line intersects the y-axis?

Show answer & extension

Two lines

Let A and B be two straight lines such that the gradient of A is the y-intercept of B and the y-intercept of A is the gradient of B (the gradient and y-intercept of A are not the same). What are the co-ordinates of the point where the lines meet?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

partitions probabilty remainders cards squares colouring taxicab geometry doubling dominos 3d shapes algebra time gerrymandering sequences differentiation logic indices routes people maths proportion sum to infinity palindromes perfect numbers cryptic crossnumbers ellipses floors lines mean calculus regular shapes division fractions rectangles median symmetry hexagons graphs tiling perimeter cube numbers circles addition chocolate ave prime numbers means functions crossnumber chalkdust crossnumber spheres coins square roots numbers integers area triangle numbers integration irreducible numbers elections complex numbers books multiples odd numbers star numbers shapes crossnumbers 2d shapes arrows cryptic clues advent factors dice factorials probability bases square numbers money the only crossnumber parabolas sport wordplay geometry volume digits chess rugby number percentages sums range pascal's triangle grids crosswords folding tube maps dates trigonometry multiplication dodecagons speed menace scales digital clocks games shape coordinates christmas planes unit fractions quadratics angles clocks averages balancing polygons triangles surds products

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020