# Puzzles

## Archive

Show me a random puzzle**Most recent collections**

#### Sunday Afternoon Maths LXVII

Coloured weightsNot Roman numerals

#### Advent calendar 2018

#### Sunday Afternoon Maths LXVI

Cryptic crossnumber #2#### Sunday Afternoon Maths LXV

Cryptic crossnumber #1Breaking Chocolate

Square and cube endings

List of all puzzles

## Tags

2d shapes planes integers calculus quadratics number coins sum to infinity chalkdust crossnumber speed factors money odd numbers integration dates sequences square numbers polygons rugby lines irreducible numbers rectangles christmas probability colouring circles mean angles spheres grids 3d shapes fractions surds symmetry perfect numbers volume books trigonometry wordplay graphs hexagons geometry probabilty multiplication differentiation star numbers addition square roots cube numbers partitions multiples digits coordinates remainders functions bases advent triangle numbers squares cryptic crossnumbers complex numbers crosswords chess sport clocks regular shapes doubling dodecagons routes balancing people maths division pascal's triangle indices sums shapes proportion shape cryptic clues dice algebra area perimeter arrows means averages menace unit fractions ellipses palindromes ave floors crossnumbers factorials numbers games prime numbers scales folding tube maps parabolas taxicab geometry percentages triangles time cards logic chocolate## 6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),

$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?

## Between quadratics

Source: Luciano Rila (@DrTrapezio)

\(p(x)\) is a quadratic polynomial with real coefficients. For all real numbers \(x\),

$$x^2-2x+2\leq p(x)\leq 2x^2-4x+3$$
\(p(11)=181\). Find \(p(16)\).

## Bézier curve

A Bézier curve is created as follows:

1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).

2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).

3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).

.

.

.

\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:

$$P_0=\left(0,1\right)$$
$$P_1=\left(0,0\right)$$
$$P_2=\left(1,0\right)$$## Parabola

Source:

*Alex Through the Looking-Glass: How Life Reflects Numbers and Numbers Reflect Life*by Alex BellosOn a graph of \(y=x^2\), two lines are drawn at \(x=a\) and \(x=-b\) (for \(a,b>0\). The points where these lines intersect the parabola are connected.

What is the y-coordinate of the point where this line intersects the y-axis?

## Two lines

Let A and B be two straight lines such that the gradient of A is the y-intercept of B and the y-intercept of A is the gradient of B (the gradient and y-intercept of A are not the same). What are the co-ordinates of the point where the lines meet?

**
**

**© Matthew Scroggs 2019**