Advent calendar 2017

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?


Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles


clocks colouring quadratics fractions percentages palindromes squares crosswords ave numbers pascal's triangle regular shapes means scales dodecagons dice 2d shapes people maths chocolate lines time range sums surds folding tube maps complex numbers the only crossnumber wordplay coins integers floors sport digital clocks median prime numbers elections planes rectangles chalkdust crossnumber cards circles multiples spheres arrows advent symmetry dates factors mean probabilty volume money partitions multiplication balancing angles perimeter geometry square roots routes probability coordinates taxicab geometry gerrymandering speed addition sequences christmas games functions grids square numbers books proportion crossnumbers chess algebra digits menace 3d shapes sum to infinity tiling star numbers perfect numbers averages logic irreducible numbers cryptic crossnumbers polygons graphs rugby ellipses doubling parabolas unit fractions integration crossnumber cube numbers differentiation triangles cryptic clues bases indices shape factorials remainders division trigonometry area triangle numbers calculus odd numbers dominos shapes products hexagons number


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020