Advent calendar 2017

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?


Show me a random puzzle
 Most recent collections 

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

Sunday Afternoon Maths LXV

Cryptic crossnumber #1
Breaking Chocolate
Square and cube endings

List of all puzzles


averages regular shapes proportion sport arrows fractions calculus ave parabolas routes time scales surds shapes colouring shape crosswords floors means lines sum to infinity number integration dice people maths cube numbers chalkdust crossnumber quadratics cards indices triangles square numbers division cryptic clues wordplay books chess 2d shapes partitions area factors square roots advent star numbers polygons bases irreducible numbers trigonometry digits geometry rectangles hexagons clocks angles triangle numbers mean squares christmas percentages ellipses chocolate pascal's triangle balancing differentiation logic grids multiplication complex numbers folding tube maps volume perimeter coins spheres symmetry odd numbers perfect numbers graphs doubling addition probability menace dates factorials circles functions speed games algebra sums palindromes prime numbers numbers crossnumbers sequences planes probabilty rugby remainders unit fractions dodecagons cryptic crossnumbers money integers 3d shapes taxicab geometry multiples coordinates


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2019