Advent calendar 2017

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?


Show me a random puzzle
 Most recent collections 

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

Sunday Afternoon Maths LXV

Cryptic crossnumber #1
Breaking Chocolate
Square and cube endings

List of all puzzles


doubling calculus cards people maths triangle numbers 2d shapes lines clocks menace dodecagons scales averages division circles indices chalkdust crossnumber symmetry sequences grids regular shapes cube numbers chocolate odd numbers routes bases hexagons prime numbers squares rugby pascal's triangle algebra probability triangles 3d shapes multiplication integers square roots logic proportion complex numbers coins colouring christmas speed area numbers factorials surds time money arrows remainders games multiples integration geometry addition quadratics cryptic crossnumbers factors crosswords unit fractions balancing sums dice advent crossnumbers differentiation mean ellipses books rectangles chess functions cryptic clues volume palindromes parabolas digits percentages number star numbers sport partitions wordplay planes perimeter spheres coordinates dates trigonometry polygons irreducible numbers ave taxicab geometry sum to infinity folding tube maps shapes floors graphs means perfect numbers square numbers fractions shape probabilty angles


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2019