## Archive

Show me a random puzzle**Most recent collections**

#### Sunday Afternoon Maths LXVI

Cryptic crossnumber #2#### Sunday Afternoon Maths LXV

Cryptic crossnumber #1Breaking Chocolate

Square and cube endings

#### Sunday Afternoon Maths LXIV

Equal lengthsDigitless factor

Backwards fours

#### Sunday Afternoon Maths LXIII

Is it equilateral?Cube multiples

List of all puzzles

## Tags

time geometry 2d shapes 3d shapes numbers spheres trigonometry complex numbers algebra lines graphs coordinates odd numbers fractions differentiation calculus folding tube maps ellipses triangle numbers money bases triangles squares area square numbers chess probability circles averages speed sport multiples dates factors parabolas functions logic cards games people maths shape prime numbers irreducible numbers probabilty angles proportion dice integration sum to infinity dodecagons hexagons multiplication factorials coins shapes regular shapes colouring grids floors integers rugby crosswords percentages digits sums christmas square roots surds doubling quadratics indices symmetry arrows addition cube numbers star numbers rectangles chocolate cryptic clues cryptic crossnumbers crossnumbers wordplay clocks menace routes taxicab geometry remainders chalkdust crossnumber palindromes sequences means unit fractions division planes volume number partitions ave pascal's triangle mean advent perfect numbers# Sunday Afternoon Maths LXIV

**Posted on 2018-05-06**

## Equal lengths

The picture below shows two copies of the same rectangle with red and blue lines. The blue line visits the midpoint of the opposite side. The lengths shown in red and blue are of equal length.

What is the ratio of the sides of the rectangle?

## Digitless factor

Ted thinks of a three-digit number. He removes one of its digits to make a two-digit number.

Ted notices that his three-digit number is exactly 37 times his two-digit number. What was Ted's three-digit number?

## Backwards fours

Source: FiveThirtyEight

If A, B, C, D and E are all unique digits, what values would work with the following equation?

$$ABCCDE\times 4 = EDCCBA$$If you enjoyed these puzzles, check out Sunday Afternoon Maths LXVI,

puzzles about pascal's triangle, or a random puzzle.

puzzles about pascal's triangle, or a random puzzle.