mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

24 December

When written in binary, the number 235 is 11101011. This binary representation starts and ends with 1 and does not contain two 0s in a row.
What is the smallest three-digit number whose binary representation starts and ends with 1 and does not contain two 0s in a row?

Show answer

21 December

There are 6 two-digit numbers whose digits are all 1, 2, or 3 and whose second digit onwards are all less than or equal to the previous digit:
How many 20-digit numbers are there whose digits are all 1, 2, or 3 and whose second digit onwards are all less than or equal to the previous digit?

Show answer & extension

19 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
+= 7
× × ×
+= 0
÷ ÷ ÷
+= 2
=
4
=
35
=
18

Show answer

Tags: numbers, grids

18 December

Some numbers can be written as the product of two or more consecutive integers, for example:
$$6=2\times3$$ $$840=4\times5\times6\times7$$
What is the smallest three-digit number that can be written as the product of two or more consecutive integers?

15 December

The arithmetic mean of a set of \(n\) numbers is computed by adding up all the numbers, then dividing the result by \(n\). The geometric mean of a set of \(n\) numbers is computed by multiplying all the numbers together, then taking the \(n\)th root of the result.
The arithmetic mean of the digits of the number 132 is \(\tfrac13(1+3+2)=2\). The geometric mean of the digits of the number 139 is \(\sqrt[3]{1\times3\times9}\)=3.
What is the smallest three-digit number whose first digit is 4 and for which the arithmetic and geometric means of its digits are both non-zero integers?

Show answer & extension

12 December

What is the smallest value of \(n\) such that
$$\frac{500!\times499!\times498!\times\dots\times1!}{n!}$$
is a square number?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ + ÷
+= 10
+ ×
÷×= 3
=
16
=
1
=
30

Show answer

Tags: numbers, grids

10 December

How many integers are there between 100 and 1000 whose digits add up to an even number?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

menace ellipses sport arrows digital products volume scales colouring perimeter polygons sums chocolate rugby folding tube maps lines perfect numbers range ave means triangles digital clocks sum to infinity 3d shapes sequences chalkdust crossnumber factorials coins partitions star numbers number complex numbers hexagons products addition regular shapes area averages crossnumbers bases routes consecutive numbers floors cube numbers tiling square roots books multiplication odd numbers factors pascal's triangle tangents money taxicab geometry combinatorics balancing dominos cubics triangle numbers coordinates integration elections shapes polynomials christmas percentages matrices unit fractions games calculus geometry logic proportion shape determinants the only crossnumber circles geometric mean trigonometry advent grids crossnumber palindromes wordplay doubling expansions chess digits sets remainders dice axes crosswords speed numbers consecutive integers indices binary algebra planes median fractions quadrilaterals even numbers square numbers cards differentiation dodecagons clocks spheres irreducible numbers cryptic crossnumbers dates division cryptic clues symmetry parabolas gerrymandering tournaments pentagons time geometric means decahedra probabilty prime numbers 2d shapes functions integers squares albgebra rectangles surds graphs multiples people maths quadratics probability mean angles

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024