mscroggs.co.uk
mscroggs.co.uk

subscribe

Sunday Afternoon Maths VIII

 Posted on 2014-04-13 

Rebounds

In a 4x3 rectangle, a ball is fired from the top left corner at 45°.
It bounces around a rectangle until it hits a corner. Which corner does it end in?
Which corner will it end in for rectangles of other sizes?

Show answer & extension

Tags: geometry

Complex squares

For which complex numbers, \(z\), are \(\mathrm{Re}(z^2)\) and \(\mathrm{Im}(z^2)\) both positive?

Show answer & extension

Adding bases

Let \(a_b\) denote \(a\) in base \(b\).
Find bases \(A\), \(B\) and \(C\) less than 10 such that \(12_A+34_B=56_C\).

Show answer & extension

Tags: numbers, bases

Reverse bases again

Find three digits \(a\), \(b\) and \(c\) such that \(abc\) in base 10 is equal to \(cba\) in base 9?

Show answer & extension

Tags: numbers, bases

Two

Find \(a\) such that \(a+(a+A)^{-1}=2\), where \(A=(a+A)^{-1}\).
ie. \(a + \frac{1}{a + \frac{1}{a + \frac{1}{a + \frac{1}{...}}}} = 2\).
Find \(b\) such that \(b+(b+B)^{\frac{1}{2}}=2\), where \(B=(b+B)^{\frac{1}{2}}\).
ie. \(b + \sqrt{b + \sqrt{b + \sqrt{b + \sqrt{...}}}} = 2\).
Find \(c\) such that \(c+(c+C)^{2}=2\), where \(C=(c+C)^{2}\).
In terms of \(k\), find \(d\) such that \(d+(d+D)^{k}=2\), where \(D=(d+D)^{k}\).

Show answer & extension

Tags: numbers
If you enjoyed these puzzles, check out Advent calendar 2019,
puzzles about factors, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

balancing division square roots multiplication clocks coins elections numbers means dominos shapes symmetry probability cards circles digital clocks angles dodecagons graphs cube numbers geometry star numbers remainders cryptic crossnumbers integration mean routes squares volume square numbers chess coordinates unit fractions christmas number sums money palindromes speed pascal's triangle dates averages odd numbers functions logic crossnumbers range 3d shapes perimeter menace arrows taxicab geometry algebra factorials calculus triangle numbers hexagons partitions chocolate polygons floors people maths area cryptic clues irreducible numbers rugby rectangles tiling bases spheres advent scales planes books integers products games grids gerrymandering median lines regular shapes dice indices complex numbers perfect numbers sport probabilty differentiation ave 2d shapes shape sequences prime numbers chalkdust crossnumber digits crosswords sum to infinity addition crossnumber triangles folding tube maps ellipses fractions percentages trigonometry parabolas doubling the only crossnumber wordplay factors multiples surds proportion colouring quadratics time

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020