PHAS0102: Techniques of High-Performance Computing

Sparse solvers

Symmetric matrices

- A matrix A is symmetric if $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$
- eg

$$
\left(\begin{array}{ccc}
7 & 1 & 0 \\
1 & 0.5 & 4 \\
0 & 4 & 0
\end{array}\right)
$$

Positive definite matrices

- A matrix A is positive definite if for all non-zero vectors $\mathrm{x}, \mathrm{x}^{\mathrm{T}} \mathrm{Ax}>0$
- eg $\left(\begin{array}{ccc}7 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 1\end{array}\right)$

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)^{\mathrm{T}}\left(\begin{array}{ccc}
7 & 0 & 0 \\
0 & 0.5 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=7 a^{2}+0.5 b^{2}+c^{2}
$$

In the first part of today's lecture, we will look at some methods that can only by use for symmetric positive definite matrices.

Arnoldi iteration

$$
\begin{aligned}
& \left.\mathrm{V}_{m}=\text { orthogonalise }\left[\begin{array}{lllll}
\left(\begin{array}{llll}
\mathbf{b} & \mathrm{Ab} & \mathrm{~A}^{2} \mathbf{b} & \mathrm{~A}^{2} \mathbf{b}
\end{array} \ldots \mathrm{~A}^{m-1} \mathbf{b}\right.
\end{array}\right)\right] \\
& \mathrm{V}_{m}^{\mathrm{T}} \mathrm{AV}_{m} \mathbf{y}_{m}=\mathrm{V}_{m}^{\mathrm{T}} \mathbf{b} \\
& \mathbf{x} \approx \mathbf{x}_{m}=\mathrm{V}_{m} \mathbf{y}_{m}
\end{aligned}
$$

A is symmetric $\Longrightarrow \mathrm{V}_{m}^{\mathrm{T}} \mathrm{AV}_{m}$ is symmetric

Lanczos-Arnoldi

- Lanczos-Arnoldi is a specialised version of Arnoldi that make simplifications due to this symmetry.

An optimisation problem

$$
\min _{\mathbf{x}}\left(\frac{\left.\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathrm{~A} \mathbf{x}-\mathbf{x}^{\mathrm{T}} \mathbf{b}\right)}{f(\mathbf{x})}\right.
$$

$$
\nabla f=\mathrm{A} \mathbf{x}-\mathbf{b} \quad \Longrightarrow \text { Turning point when } \mathbf{A} \mathbf{x}=\mathbf{b}
$$

$\mathrm{H}(f)=\mathrm{A}$ is positive definite \Longrightarrow Turning point is minimum

An optimisation method

$$
\min _{\mathbf{x}}\left(\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathrm{~A} \mathbf{x}-\mathbf{x}^{\mathrm{T}} \mathbf{b}\right)
$$

Pick initial guess \mathbf{X}_{0}
Loop over i :
Pick a direction \mathbf{d}_{i}
Find $\mathbf{x}_{i}=\mathbf{x}_{i-1}+\alpha_{i} \mathbf{d}_{i}$ that minimises $\left(\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathrm{A} \mathbf{x}-\mathbf{x}^{\mathrm{T}} \mathbf{b}\right)$

Steepest descent method

$$
\begin{aligned}
\mathbf{d}_{i} & =-\nabla f\left(\mathbf{x}_{i-1}\right)=\mathbf{b}-\mathrm{A} \mathbf{x}_{i-1} \\
\alpha_{i} & =\frac{\mathbf{d}_{i}^{\mathrm{T}} \mathbf{d}_{i}}{\mathbf{d}_{i}^{\mathrm{T}} \mathrm{Ad}_{i}}
\end{aligned}
$$

$$
\mathbf{x}_{i}=\mathbf{x}_{i-1}+\left(\frac{\mathbf{d}_{i}^{\mathrm{T}} \mathbf{d}_{i}}{\mathbf{d}_{i}^{\mathrm{T}} \mathrm{Ad}_{i}}\right) \mathbf{d}_{i}
$$

Conjugate directions

Pick a set of orthogonal directions $\mathbf{d}_{0}, \mathbf{d}_{1}, \mathbf{d}_{2}, \ldots$
Pick α_{i} so that $\mathbf{e}_{i}^{\mathrm{T}} \mathbf{d}_{i}=0$

$$
\mathbf{e}_{i}=\mathbf{x}_{i}-\mathbf{x}^{*}, \quad \mathrm{~A} \mathbf{x}^{*}=\mathbf{b}
$$

$$
\alpha_{i}=\frac{\mathbf{d}_{i}^{\mathrm{T}} \mathbf{r}_{i}}{\mathbf{d}_{i}^{\mathrm{T}} \mathrm{~A} \mathbf{d}_{i}} \quad \quad \mathbf{r}_{i}=\mathbf{b}-\mathrm{A} \mathbf{x}_{i}
$$

$$
\mathbf{x}_{i}=\mathbf{x}_{i-1}+\left(\frac{\mathbf{d}_{i}^{\mathrm{T}} \mathbf{r}_{i}}{\mathbf{d}_{i}^{\mathrm{T}} \mathrm{~A} \mathbf{d}_{i}}\right) \mathbf{d}_{i}
$$

Conjugate gradients (CG)

Pick a set of directions $\mathbf{d}_{i}=-\nabla f\left(\mathbf{x}_{i}\right)$ and orthogonalise them
Pick α_{i} so that $\mathbf{e}_{i}^{\mathrm{T}} \mathbf{d}_{i}=0$

$$
\mathbf{e}_{i}=\mathbf{x}_{i}-\mathbf{x}^{*}, \quad \mathrm{~A} \mathbf{x}^{*}=\mathbf{b}
$$

$$
\alpha_{i}=\frac{\mathbf{d}_{i}^{\mathrm{T}} \mathbf{r}_{i}}{\mathbf{d}_{i}^{\mathrm{T}} \mathrm{~A} \mathbf{d}_{i}}
$$

$$
\mathbf{r}_{i}=\mathbf{b}-\mathrm{A} \mathbf{x}_{i}
$$

$$
\mathbf{x}_{i}=\mathbf{x}_{i-1}+\left(\frac{\mathbf{d}_{i}^{\mathrm{T}} \mathbf{r}_{i}}{\mathbf{d}_{i}^{\mathrm{T}} \mathrm{~A} \mathbf{d}_{i}}\right) \mathbf{d}_{i}
$$

Condition number

The condition number of a matrix is

$$
\kappa(\mathrm{A})=\frac{\text { largest eigenvalue of } \mathrm{A}}{\text { smallest eigenvalue of } \mathrm{A}}
$$

Convergence

Steepest descent

$$
\begin{gathered}
\left\|\mathbf{x}_{i}-\mathbf{x}^{*}\right\|_{\mathrm{A}} \leqslant\left(\frac{\kappa-1}{\kappa+1}\right)^{i}\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|_{\mathrm{A}}
\end{gathered} \begin{array}{ccccc}
\kappa & 10 & 50 & 100 \\
\mathrm{CG} & \frac{\kappa-1}{\kappa+1} & & & \\
0.82 & 0.96 & 0.98 \\
11-12 & 60 & 110 \\
& & \frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1} & 0.52 & 0.75 \\
3-4 & 8 & 0.82 \\
\hline \mathbf{x}_{i}-\mathbf{x}^{*}\left\|_{\mathrm{A}} \leqslant 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\right\| \mathbf{x}_{0}-\mathbf{x}^{*} \|_{\mathrm{A}} & & & &
\end{array}
$$

Preconditioning

$$
A x=b
$$

$$
\mathrm{PAx}=\mathrm{Pb}
$$

$$
\mathrm{P}^{-1} \mathrm{Ax}=\mathrm{P}^{-1} \mathbf{b}
$$

Aim: Pick $\mathrm{P}_{\text {so that }} \kappa(\mathrm{PA}) \ll \kappa(\mathrm{A})$

Preconditioning

- There is no general good preconditioner
- Different preconditioners are looked for for different problems
- Lots of different, highly specialised preconditioners exists

Preconditioners:

A simple preconditioner

$$
\left(\begin{array}{ccccc}
1 / 7 & 0 & 0 & 0 & 0 \\
0 & 1 / 8 & 0 & 0 & 0 \\
0 & 0 & 1 / 6 & 0 & 0 \\
0 & 0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 5
\end{array}\right)\left(\begin{array}{ccccc}
7 & 0 & 0 & 0 & 0 \\
0 & 8 & 0 & 0.2 & 0 \\
0.5 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0.2
\end{array}\right)
$$

Preconditioners:

Sparse approximate inverse

$$
\|\mathrm{A}\|_{\mathrm{F}}:=\sqrt{\sum_{i, j}\left|a_{i, j}\right|^{2}}
$$

Aim: Find P so that $\|\mathrm{I}-\mathrm{AP}\|_{\mathrm{F}}$ is small

Preconditioners:

Sparse approximate inverse

$$
\begin{aligned}
\mathrm{C}_{k} & =\mathrm{AP}_{k} \\
\mathrm{G}_{k} & =\mathrm{I}-\mathrm{C}_{k} \\
\alpha_{k} & =\operatorname{tr}\left(\mathrm{G}_{k} \mathrm{AG}_{k}\right) /\left\|\mathrm{AG}_{k}\right\|_{\mathrm{F}} \\
\mathrm{P}_{k+1} & =\mathrm{P}_{k}+\alpha_{k} \mathrm{G}_{k}
\end{aligned}
$$

Is there time for a [live Python demo]?

