PHASO0102: Techniques of
High-Performance Computing



Sparse solvers
Ax =D

~~ ~

(known) sparse matrix (known) vector

(unknown) vector



Symmetric matrices

* A matrix A is symmetric if AT = A
[ eg 1
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Positive definite matrices

* A matrix A is positive definite if for all non-zero
vectors x, x ' Ax > 0

*eg /7 0 O
0 05 0
0 0 1

a 7 0
b 0 0.5 0 b | =7a° +0.56% + ¢
C 0 1



In the first part of today’s lecture, we will look at
some methods that can only by use for symmetric
positive definite matrices.



Arnoldi iteration
V,, = orthogonalise [(b Ab A’b A®b ...Am_lb)}
Vo AV ym = Vb

X~ Xm = VinYm

T
A s symmetric =~ ——> VmAVm is symmetric



Lanczos-Arnoldi

* Lanczos-Arnoldi is a specialised version of Arnoldi
that make simplifications due to this symmetry.



An optimisation problem
m}in( %XTAX — x'b)
F(x)
Vf=AXx—Db = Turningpointwhen AX = b

H(f) = As positive definite =——> Turning point is minimum



An optimisation method
min(ix"Ax — x"b)
Pick initial guess Xy
Loop over 1:

Pick a direction dz

1., T T
Find X;, — X;_ —|— Oé'd' that minimises | 5 X AX — X b
) 1—1 AT 9



Steepest descent method
di — _vf(Xi—l) — b — AXi_l

- dfd,
- dTAd,

o (didi g
Xq = X4— 0
F T\ dTAd,

07




Conjugate directions

Pick a set of orthogonal directions do7 dl , dg, e
: T _
Pick (¢ so that €, dz =0

e, =X;,—x, Ax*=Db

d'r;
Xi:Xz'—l_'_< - )di



Conjugate gradients (CG)
Pick a set of directions dz — —Vf(xz) and orthogonalise them

Pick O¢; so that e;rd@ =0

e, —=X; — X, Ax* =D




Condition number

The condition number of a matrix is

largest eigenvalue of A

R(A) =

smallest eigenvalue of A



Convergence

Steepest descent

i — x*[la < (

k+ 1

Kk — 1 ¢
) %0 — x*I|
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Preconditioning
Ax =D
PAx = Pb P 'Ax =P 'b
Aim: Pick P so that k(PA) << k(A)



Preconditioning

* There is no general good preconditioner

— Different preconditioners are looked for for different
broblems

— Lots of different, highly specialised preconditioners
exists
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A simple preconditioner
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Preconditioners:
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Preconditioners:
Sparse approximate inverse

[Alle == > lai,|?
0]

Aim: Find P so that HI — APHF is small




Preconditioners:
Sparse approximate inverse

Cr = APy

G, =1-—Cy

ap = tr(GrAGg) /|| AGg||w
Prr1 = Pr + arGy



Is there time for a
[live Python demo]?
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