PHAS0102: Techniques of High-Performance Computing

Shameless self-promotion

Assignment 2

- On Moodle and mscroggs.co.uk/phas0102
- Deadline: 5pm on Thursday 3 November

Example problem

- Poisson problem

$$
\begin{aligned}
-\Delta u & =1 \\
u & =0
\end{aligned}
$$

in $[0,1]^{2}$,
on the boundary

Finite differences

$$
\begin{gathered}
\frac{\mathrm{d} u}{\mathrm{~d} x} \approx \frac{u_{i+1, j}-u_{i, j}}{h} \\
\frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}} \approx \frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{h^{2}} \\
\Delta u=\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+\frac{\mathrm{d}^{2} u}{\mathrm{~d} y^{2}} \approx \frac{u_{i-1, j}+u_{i, j-1}-4 u_{i, j}+u_{i+1, j}+u_{i, j+1}}{h^{2}}
\end{gathered}
$$

$$
\begin{gathered}
-\Delta u=1 \\
\frac{4 u_{i, j}-u_{i-1, j}-u_{i, j-1}-u_{i+1, j}-u_{i, j+1}}{h^{2}}=1
\end{gathered}
$$

$$
\begin{gathered}
u=0 \text { on the boundary } \\
u_{i, j}=0 \text { on the boundary }
\end{gathered}
$$

[live code demo]

Sparse matrix storage

- We would like to not have to store all the 0 s in the matrix in memory.
- Ideas?

COO (coordinate) format

- Store two lists of integers and one list of data:
- First integer list is rows
- Second integer list is columns
- Data list is values in (row, column)
- eg

$$
\begin{aligned}
& -[0,1] \\
& -[1,0] \\
& -[0.5,0.7]
\end{aligned} \quad\left(\begin{array}{cc}
0 & 0.5 \\
0.7 & 0
\end{array}\right)
$$

- COO is the easiest format to use to create a sparse matrix

CSR (compressed sparse rows) format

- Store two lists of integers and one list of data:
- First integer list is columns
- Second integer list is when row changes
- Data list is values in (row, column)
- eg
$-[0,1]$

$$
\left(\begin{array}{cc}
0 & 0.5 \\
0.7 & 0
\end{array}\right)
$$

- CSR uses less storage space, and is used by many sparse solvers.

CSC (compressed sparse columns) format

- This is the same as CSR, but with the role of rows and columns swapped.
[live code demo]

Other formats

- There are lots of other sparse matrix formats, including:
- LIL (list of lists)
- DOK (dictionary of keys)
- DIA (diagonal storage)
- BSR (block sparse rows)

