

PHAS0102: Techniques of
High-Performance Computing

GPUs and CPUs
● CPU = central processing unit

– Designed to be good at everything a computer needs to
do

● GPU = graphical processing unit
– Designed to be good at processing 3D graphics

GPUs and CPUs
CPU GPU

A few powerful cores A lot of smaller cores

GPUs
● Can do many parallel flops at the same time
● Usually only fast for single precision computations
● Copying memory to a GPU can take time, and

GPUs have limited storage

Common GPU manufacturers
● Nvidia
● AMD
● Intel

Programming on a GPU
● Cuda

– Nvidia specific GPU API
– Can be used from Python, C, C++, Fortran, Matlab, Julia, and more

● OpenCL
– Open → can be used on all platforms
– Can run on GPUs or CPUs

● SYCL
– More modern open standard

Programming on a GPU
● OneApi

– Developed by Intel
– Cros platform

● OpenACC
– Can be used from C, C++ and Fortran
– Used on many large HPC systems

● OpenMP
– Can be used from C, C++ and Fortran
– First developed for CPUs but more recent versions also support GPUs

Programming on a GPU
● My personal recommendation

if you’re using an Nvidia GPU:

 Cuda
elif you’re using C++:

 SYCL
else:

 OpenCL

pycuda and pyopencl
● These two libraries allow you to use Cuda and

OpenCL directly from Python.
● There are examples in the lecture notes.

Using Cuda with Numba
from numba import cuda

[live Numba & CUDA demo]

Cuda device model
● Streaming multiprocessor (SM)

– GPUs are made up of multiple SMs

● Warps
– A collection of blocks
– Each thread in a warp must follow the same

execution path

● Blocks
– A collection of threads

● Thread
– Threads are where calculations are actually

done

Cuda device model
● Threads for integer calculations
● Threads for float calculations
● Tensor threads

Cuda device model
● Global memory

– Access from threads to global
memory is slow

● Shared memory
– Shared within a block

● Private memory
– Used by a thread during

calculations

Thread numbering

● In this example, threads are arranged in a line. Threads
could also be arranged into a 2D or 3D array.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

