PHAS0102: Techniques of High-Performance Computing

Assignment 1

- On Moodle and mscroggs.co.uk/phas0102
- Reminder: 20% of the assessment for the course
- Deadline: Thursday 20 October 5pm

Column vectors vs row vectors

Numpy will interpret this as either a row vector or a column vector depending on the situation.

timeit

$t=t i m e i t(m a t v e c(A, v)$, repeat $=10)$
"Here's a vector, how long does it take?"
def $f()$:
matvec (A, v)
$t=t i m e i t(f, r e p e a t=10)$
"Here's a function, how long does it take?"
Do the same thing
$t=$ timeit(lambda: matvec(A, v), repeat=10)

Numba

- Just-in-time compilation
- Converts Python functions into fast compiled code when the function is first called
[live Numba demo]

What does Numba do?

- Detects information about your CPU then makes code that will run fast on your computer.
- SIMD
- Parallel for loops (with automatically detected number of processes)
- Numba can be configured if you don't want to use the auto settings.

What can Numba not do?

- Many things Python can do:
- Pandas
- Lists with different types inside
- If you want to use Numba on something it can't do, you can use @jit (nopython=False) to make it only partially compile a function.

Numexpr

- Numexpr can be used to do fast operations on Numpy arrays
[live Numexpr demo]

0

- A (mathematical) function is $\mathrm{O}\left(n^{k}\right)$ if (for very large n) the function is less than $a n^{k}$.
- An algorithm is $O\left(n^{k}\right)$ if the number of operations is needs to be completed is $\mathrm{O}\left(n^{k}\right)$.

0

```
result \(=0\)
for i in range(n):
for \(j\) in range \((n)\) :
for \(k\) in range( \(n\) ):
result += A[i, j, k]
```

"This function is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ because there are 3 for loops."

0

result $=0$
for i in range(n): result $+=$ A[i]
for j in range(n): result $+=B[j]$
"This function is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ because there are 2 for loops."

0

```
result \(=0\)
for \(i\) in range(n):
for \(j\) in range \((n)\) :
for \(k\) in range(2):
result += A[i, j, k]
```

"This function is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ because there are 3 for loops."
result $=0$
for i in range(n): for j in range (n) : result $+=f(i, j)$
"This function is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ because there are 2 for loops."?

Example: matrix-matrix multiplication

Memory: n^{2} numbers in result $\rightarrow \mathrm{O}\left(\mathrm{n}^{2}\right)$
Number of operations:
Each entry of the result needs n multiplications and $\mathrm{n}-1$ additions
There are n^{2} entries
So overall, $\mathrm{n}^{2}(2 \mathrm{n}-1)$ operations $\rightarrow \mathrm{O}\left(\mathrm{n}^{3}\right)$

Example: matrix-matrix multiplication

- There are algorithms for matrix-matrix multiplication that are faster than $\mathrm{O}\left(\mathrm{n}^{3}\right)$.
- In 1969, an O(n $\left.{ }^{2.8074}\right)$ algorithm was found
- In 2020, an O(n $\left.{ }^{2.3728596}\right)$ algorithms was found
- It is unknown what the optimal possible complexity is, but it is know that it's between $\mathrm{O}\left(\mathrm{n}^{2}\right)$ and $\mathrm{O}\left(\mathrm{n}^{2.3778596}\right)$

Memory-bound \& compute-bound

- An algorithm is memory-bound if it is limited by how much memory it needs.
- An algorithm is compute-bound if it is limited by how many operations is needs to do.
- The status of an algorithm can depend on the hardware of a computer.

