
  

PHAS0102: Techniques of
High-Performance Computing



  

Moodle
● You should now all have access to Moodle.

– If not, email me



  

Tutorials
– (Group 1) Mondays 10-11, Euston Road (222) G01

● Very full

– (Group 2) Mondays 11-12, Chadwick Building 2.18
● 9 spaces



  

Virtual drop-in hour
– Wednesdays 11:30-12:30, link on Moodle
– No drop-in on 12 October



  

PHAS0102 Part 0:
What is High-Performance 

Computing?



  

HPC Programming languages
Compiled languages

 ❤️ C / C++

 ❤️ Rust

 👎 Fortran
Go, Java (usually), COBOL, 
Haskell, Pascal...

Interpreted languages
 ❤️ Python

 👋Matlab

 👍 Ruby
Javascript, Lua, Maple, 
Mathematica...

 👍 Julia



  

PHAS0102 Part 1:
High-Performance Computing

with Python



  

Numpy and Scipy
● Numpy

– Fast data types for vectors and matrices
– Linear algebra operations

● Scipy
– Matrix algorithms, optimisation algorithms, etc



  

Memory layout
0 1 2 3 4 5 6 7 8 ...

Byte 
address

● It is faster to access a set of nearby bytes than a set of bytes that are 
spread out.

● Lower level languages like C and Fortran allow you to control 
exactly how memory is used, so can be much faster.

1 byte = 8 bits



  

Storing a matrix
0 1 2 3 4 5 6 7 8 0

5          -3          2            1

5           2          -3           1

← C-style ordering

← Fortran-style ordering

● By default, Numpy uses C-style ordering, but you 
can tell it to use Fortran-style instead.



  

BLAS and LAPACK
● BLAS = Basic Linear Algebra Subroutines
● LAPACK = Linear Algebra Package

dgetrf(M, N, A, LDA, IPIV, INFO)

Number of rows 
in matrix

Number of 
columns in 

matrix

Byte address of 
first entry of 

matrix (note: matrix 
must use Fortran-style 

ordering)

Leading 
dimension of 

matrix

Pivots that 
were used

Indicates if 
operation was 

a success



  

Numpy
● Internally, Numpy uses BLAS and LAPACK 

routines.
● Numpy handles the memory layout, data types, etc 

for you.



  

[live Numpy demo]



  

Parallelisation



  

MPI
● MPI = Message Passing Interface
● Used to send commands and data between 

processors / computers
● import mpi4py



  

SIMD
● SIMD = Single Instruction Multiple Data

a0 a1 a2 a3

b0 b1 b2 b3

a0 b0+

+
● AVX2 – 256 bits can be 

operators on in a single 
CPU cycle.



  

SIMD
● SIMD = Single Instruction Multiple Data

a0 a1 a2 a3

b0 b1 b2 b3

a0 b0+

+
● AVX2 – 256 bits can be 

operators on in a single 
CPU cycle.

256 bits = 32 bytes

Single precision floating point number is 4 bytes → 8 singles at once
Double precision floating point number is 8 bytes → 4 doubles at once



  

SIMD
● Some CPUs support AVX-512 (512 bits in one 

operation) for some operations



  

Multithreading
● Multithreading = running multiple threads / 

processes at once on the same CPU
● import multithreading

● Due to how Python’s memory management works, 
only one thread will be active at a time.



  

Multithreading
● Next Friday: Using Numba to do proper 

multithreading with Python

● Monday: Hands-on Numpy practice (tasks to work 
through in lecture notes or Moodle or mscroggs.co.uk/PHAS0102)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

