PHASO0102: Techniques of
High-Performance Computing

Moodle

* You should now all have access to Moodle.

- If not, email me

Tutorials

— (Group 1) Mondays 10-11, Euston Road (222) G01
* Very full

— (Group 2) Mondays 11-12, Chadwick Building 2.18

* 9 spaces

Virtual drop-in hour

— Wednesdays 11:30-12:30, link on Moodle
— No drop-in on 12 October

PHAS0102 Part O:
What is High-Performance
Computing?

HPC Programming languages

Compiled languages Interpreted languages
C/C++ Python
Rust Matlab
Fortran Julia Ruby

Go, Java (usually), COBOL, Javascript, Lua, Maple,

Haskell, Pascal... Mathematica...

PHAS0102 Part 1;

High-Performance Computing
with Python

Numpy and Scipy
* Numpy

— Fast data types for vectors and matrices

— Linear algebra operations

* Scipy

— Matrix algorithms, optimisation algorithms, etc

Memory layout

1 byte = 8 bits

0 1 2 3 4 5 6 7 3

|

Byte
address

* It is faster to access a set of nearby bytes than a set of bytes that are
spread out.

* Lower level languages like C and Fortran allow you to control
exactly how memory is used, so can be much faster.

Storing a matrix

0 1 2 3 4 5 6 7 3 0

(5 _3) 5 -3 2 1 <« C-style ordering

5 2 -3 1 <« Fortran-style ordering

* By default, Numpy uses C-style ordering, but you
can tell it to use Fortran-style instead.

BLAS and LAPACK

* BLAS = Basic Linear Algebra Subroutines
* LAPACK = Linear Algebra Package

dgetrf LDA, IPIV, INFO)

’ X
Pivots that \ Indicates if
Number of rows were used operation was
in matrix Byte address of

first entry of Leading a success

Number of ,)
matrix (note: matrix dimension of

columns in)
must use Fortran-style matrix
matrix ordering)

Numpy

* Internally, Numpy uses BLAS and LAPACK
routines.

* Numpy handles the memory layout, data types, etc
for you.

[live Numpy demo]

Parallelisation

-+ | =13l
Eile Befresh Rate Help
Frocesses List | Performance hMeter I

— Running Processes

B kv 11022 cs 0.00% 0:00 0 Sleep 764K 361
8 sh 11020 o 0.00% 0:00 0 Sleep 1576k 1
X H 11017 cs 0.00% 0.0 0 Sleep TET1ZK. 334
X xinit 11016 cs 0.00% 0:00 0 sleep 1964k ?EJ
X starts 11003 ¢35 0.00% 0:00 0 Sleep 1555k 54
@ ksnapshot 10625 cs 0.86% 0:00 0 Sleep G506k, 305
@ ktop 10368 cs 15.79% 026 0 Run 6036k, 424
1 tesh §3a0 cs 0.00% 0:00 0 Sleep 1968K. 125
& mutt 8331 cs 0.00% 0.0 0 Sleep 1748k 130
@ ket g3z oy 0.oo% 0o 0 Sleep GOBTK. 407
| | P
- Show Tree All processes Refresh Mow | Kill task

[66 Processes [Memary: 56 ME used, 5426 kB free | Swap: 2548 kB used, 63 b

* MPI = Message Passing Interface

e Used to send commands and data between
processors / computers

e Import mpidpy

@
k>
,:,1":;“ ﬁ‘i il
v
I

* SIMD = Single Instruction Multiple Data

e AVX2 — 256 bits can be -i--

operators on in a single
CPU cycle.

256 bits = 32 bytes

Single precision floating point number is 4 bytes — 8 singles at once
Double precision floating point number is 8 bytes — 4 doubles at once

* AVX2 - 256 bits can be
operators on in a single = % 1 z ;
CPU cycle.

* Some CPUs support AVX-512 (512 bits in one
operation) for some operations

TP
‘?“ ""
) 0 e lq Ry
< N ° °
e
b o o)
(6.2 AN
i t‘, SN
e SN\

* Multithreading = running multiple threads /
processes at once on the same CPU

e 1mport multithreading

* Due to how Python’s memory management works,
only one thread will be active at a time.

P
e
A
P S ° [
D o &
o SN
1602
& 23 s\‘
Wlp- 3N
\
0'0 Q“

* Next Friday: Using Numba to do proper
multithreading with Python

* Monday: Hands-on Numpy practice (tasks to work
thrOugh in lecture notes or Moodie or mscroggs.co.uk/PHASO]OZ)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

