PHAS0102: Techniques of High-Performance Computing

Who am I?

- Dr Matthew Scroggs
 - "Matthew" or "Matt"
 - matthew.scroggs.14@ucl.ac.uk
- Postdoctoral researcher in Department of Mathematics working on numerical method for PDEs.

Note

Prof Timo Betcke taught the course last year, and is still listed as lecturer in some locations.

Timo is still at UCL, so if you email him by mistake, he'll just forward it on to me.

Who are you?

Course admin

- Lectures
 - Fridays 10-11, Anatomy G04 Gavin de Beer LT
- Tutorials
 - (Group 1) Mondays 10-11, Euston Road (222) G01
 - (Group 2) Mondays 11-12, Chadwick Building 2.18
- Virtual drop-in hour
 - Wednesdays 11:30-12:30, link on Moodle

Course admin

- All this information is:
 - On Moodle
 - At https://mscroggs.co.uk/PHAS0102

Course admin: Assessment

- Coursework 1 (20%)
 - Deadline: Thursday 20 October, 5pm
- Coursework 2 (20%)
 - Deadline: Thursday 3 November, 5pm
- Coursework 3 (30%)
 - Deadline: Thursday 1 December, 5pm
- Coursework 4 (30%)
 - Deadline: Thursday 15 December, 5pm

Course admin: Assessment

- Coursework is important
 - Marking mistakes occasionally happen. If you think there's a mistake in the marking of your coursework, email me within 1 week of getting marks back.

Course admin: Assessment

Note: Assessments in lecture notes are last year's assessments. Do not start working on them!

Course admin: I need help

• Lecture notes: tbetcke.github.io/hpc_lecture_notes

Course admin: I need help

- Lecture notes: tbetcke.github.io/hpc_lecture_notes
- Zoom chat: PHAS0102 (22/23)

Zoom chat

<u> </u>	Zoom Cloud Meetings	1º
	zoom	
	Email	
	Password Forgot?	
	Sign In	
	Keep me signed in	E
	G G	
< Back	SSO Apple Google Facebook Sign Up Free 📑	
5° 1925		T

Zoom chat

	Sign In with	SSO		
	ucl		.700m.US	
	I do not know the comp	any domain	Continue	
/ Pack				
N DOCK				

Zoom chat

Search for PHAS0102 (22/23)

Course admin: I need help

- Lecture notes: tbetcke.github.io/hpc_lecture_notes
- Zoom chat: PHAS0102 (22/23)
- Virtual drop-in hour: Wednesdays 11:30-12:30, link on Moodle

Gather Town

Course admin: I need help

- Lecture notes: tbetcke.github.io/hpc_lecture_notes
- Zoom chat: PHAS0102 (22/23)
- Virtual drop-in hour: Wednesdays 11:30-12:30, link on Moodle
- Email me: matthew.scroggs.14@ucl.ac.uk

Course content

- HPC with Python (~3 weeks)
- Sparse linear algebra (~5 weeks)
- Time-dependent problems (~2 weeks)

PHAS0102 Part 0: What is High-Performance Computing?

What is HPC?

$$\left\{\frac{(-1)^s 2^e m}{2^{p-1}} : s \in \{0,1\}, \ e_{\min} \leqslant e \leqslant e_{\max}, \ 2^{p-1} \leqslant m \leqslant 2^p - 1\right\}$$

$$s = 0, \ e = 0, \ m = 2^{p-1} \implies 1$$

$$s = 0, \ e = 0, \ m = 2^{p-1} + 1 \implies 1 + 2^{1-p}$$

$$\left\{\frac{(-1)^{s}2^{e}m}{2^{p-1}}: s \in \{0,1\}, \ e_{\min} \leqslant e \leqslant e_{\max}, \ 2^{p-1} \leqslant m \leqslant 2^{p}-1\right\}$$

1,
$$1 + 2^{1-p}$$
, $1 + 2 \times 2^{1-p}$, $1 + 3 \times 2^{1-p}$, ..., $2 - 2^{1-p}$, 2

$$\left\{\frac{(-1)^{s}2^{e}m}{2^{p-1}}: s \in \{0,1\}, \ e_{\min} \leqslant e \leqslant e_{\max}, \ 2^{p-1} \leqslant m \leqslant 2^{p}-1\right\}$$

Single precision number (a "float")

$$e_{\min} = -126, \ e_{\max} = 127, \ p = 24$$

Double precision number (a "double")

$$e_{\min} = -1022, \ e_{\max} = 1023, \ p = 53$$

 $\varepsilon_{\mathrm{rel}}$ is the smallest value such that $1 + \varepsilon_{\mathrm{rel}} \neq 1$

Single precision number (a "float") $\varepsilon_{\rm rel}\approx 1.2\times 10^{-7}$

Double precision number (a "double") $\varepsilon_{\rm rel} \approx 2.2 \times 10^{-16}$

Gigaflops/s

Machine	Gigaflops/s
Intel Core i5-8250U (My laptop)	163
Intel Xeon Platinum 8280M	1 612
Raspberry Pi 4B	24
iPhone 13 Pro GPU	1 500
Nvidia RTX 3080	29 768
PS5 GPU	10 280
Xbox Series X GPU	12 500

Performance Development

Lists

PHAS0102 Part 1: High-Performance Computing with Python

Running Python

- Anaconda / Miniconda
- Windows Subsystem for Linux
- Google Colab