mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Archive

Show me a random puzzle
 Most recent collections 

Tags

time geometry 2d shapes 3d shapes numbers spheres trigonometry complex numbers algebra lines graphs coordinates odd numbers fractions differentiation calculus folding tube maps ellipses triangle numbers money bases triangles squares area square numbers chess probability circles averages speed sport multiples dates factors parabolas functions logic cards games people maths shape prime numbers irreducible numbers probabilty angles proportion dice integration sum to infinity dodecagons hexagons multiplication factorials coins shapes regular shapes colouring grids floors integers rugby crosswords percentages digits sums christmas square roots surds doubling quadratics indices symmetry arrows addition cube numbers star numbers rectangles chocolate cryptic clues cryptic crossnumbers crossnumbers wordplay clocks menace routes taxicab geometry remainders chalkdust crossnumber palindromes sequences means unit fractions division planes volume number partitions ave pascal's triangle mean advent perfect numbers

Archive

Show me a random puzzle
▼ show ▼

What's the star?

In the Christmas tree below, the rectangle, baubles, and the star at the top each contain a number. The square baubles contain square numbers; the triangle baubles contain triangle numbers; and the cube bauble contains a cube number.
The numbers in the rectangles (and the star) are equal to the sum of the numbers below them. For example, if the following numbers are filled in:
then you can deduce the following:
What is the number in the star at the top of this tree?
You can download a printable pdf of this puzzle here.

Show answer

Triangles between squares

Prove that there are never more than two triangle numbers between two consecutive square numbers.

Show answer & extension

Triangle numbers

Let \(T_n\) be the \(n^\mathrm{th}\) triangle number. Find \(n\) such that: $$T_n+T_{n+1}+T_{n+2}+T_{n+3}=T_{n+4}+T_{n+5}$$

Show answer & extension

© Matthew Scroggs 2018