# Puzzles

## Archive

Show me a Random Puzzle**Most Recent Collections**

#### Advent Calendar 2017

#### Sunday Afternoon Maths LXII

What's the Star?#### Sunday Afternoon Maths LXI

XYZ#### Sunday Afternoon Maths LX

Where is Evariste?Bending a Straw

List of All Puzzles

## Tags

time geometry 2d shapes 3d shapes numbers spheres trigonometry complex numbers algebra lines graphs coordinates odd numbers fractions differentiation calculus folding tube maps ellipses triangle numbers money bases triangles squares area square numbers chess probability circles averages speed sport multiples dates factors parabolas functions logic cards games people maths shape prime numbers irreducible numbers probabilty angles proportion dice integration sum to infinity dodecagons hexagons multiplication factorials coins shapes regular shapes colouring grids floors integers rugby crosswords percentages digits sums christmas rectangles clocks menace routes taxicab geometry remainders chalkdust crossnumber palindromes sequences means unit fractions division square roots surds doubling quadratics indices planes volume number partitions ave pascal's triangle mean advent symmetry arrows addition cube numbers star numbers perfect numbers## 16 December

There are 204 squares (of any size) in an 8×8 grid of squares. Today's number is the number of rectangles (of any size) in a 2×19 grid of squares

## 14 December

There are 204 squares (of any size) in an 8×8 grid of squares. Today's number is the number of squares in a 13×13 grid of squares

## What's the Star?

In the Christmas tree below, the rectangle, baubles, and the star at the top each contain a number. The square baubles contain square numbers; the triangle baubles contain triangle numbers; and the cube bauble contains a cube number.

The numbers in the rectangles (and the star) are equal to the sum of the numbers below them. For example, if the following numbers are filled in:

then you can deduce the following:

What is the number in the star at the top of this tree?

*You can download a printable pdf of this puzzle here.*

## Square Pairs

Source: Maths Jam

Can you order the integers 1 to 16 so that every pair of adjacent numbers adds to a square number?

For which other numbers \(n\) is it possible to order the integers 1 to \(n\) in such a way?

## Square Factorials

Source: Woody at Maths Jam

Multiply together the first 100 factorials:

$$1!\times2!\times3!\times...\times100!$$
Find a number, \(n\), such that dividing this product by \(n!\) produces a square number.

## Lots of Ones

Is any of the numbers 11, 111, 1111, 11111, ... a square number?

## 22 December

What is the largest number which cannot be written as the sum of distinct squares?

## Products and Sums of Squares

Show that the product of any two numbers, each of which is the sum of two square integers, is itself the sum of two square integers.