mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

11 December

Today's number is the number \(n\) such that $$\frac{216!\times215!\times214!\times...\times1!}{n!}$$ is a square number.

Show answer

Square and cube endings

Source: UKMT 2011 Senior Kangaroo
How many positive two-digit numbers are there whose square and cube both end in the same digit?

Show answer & extension

16 December

There are 204 squares (of any size) in an 8×8 grid of squares. Today's number is the number of rectangles (of any size) in a 2×19 grid of squares

14 December

There are 204 squares (of any size) in an 8×8 grid of squares. Today's number is the number of squares in a 13×13 grid of squares

What's the star?

In the Christmas tree below, the rectangle, baubles, and the star at the top each contain a number. The square baubles contain square numbers; the triangle baubles contain triangle numbers; and the cube bauble contains a cube number.
The numbers in the rectangles (and the star) are equal to the sum of the numbers below them. For example, if the following numbers are filled in:
then you can deduce the following:
What is the number in the star at the top of this tree?
You can download a printable pdf of this puzzle here.

Show answer

Square pairs

Source: Maths Jam
Can you order the integers 1 to 16 so that every pair of adjacent numbers adds to a square number?
For which other numbers \(n\) is it possible to order the integers 1 to \(n\) in such a way?

Show answer

Square factorials

Source: Woody at Maths Jam
Multiply together the first 100 factorials:
$$1!\times2!\times3!\times...\times100!$$
Find a number, \(n\), such that dividing this product by \(n!\) produces a square number.

Show answer & extension

Lots of ones

Is any of the numbers 11, 111, 1111, 11111, ... a square number?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

Sunday Afternoon Maths LXV

Cryptic crossnumber #1
Breaking Chocolate
Square and cube endings

List of all puzzles

Tags

coordinates money number numbers unit fractions crosswords indices addition pascal's triangle square roots cards surds advent people maths mean 2d shapes scales remainders speed cube numbers doubling squares shapes sequences functions angles 3d shapes clocks palindromes rectangles perfect numbers logic cryptic clues geometry partitions taxicab geometry routes folding tube maps regular shapes chalkdust crossnumber chocolate games calculus fractions odd numbers dodecagons planes parabolas triangles probability star numbers prime numbers sums square numbers cryptic crossnumbers books means crossnumbers coins area wordplay differentiation graphs colouring hexagons sum to infinity chess dates triangle numbers volume sport percentages division integers factorials irreducible numbers menace trigonometry quadratics multiplication integration multiples polygons complex numbers grids lines balancing factors circles rugby bases floors probabilty ave dice averages proportion perimeter spheres shape time digits ellipses algebra symmetry christmas arrows

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2019