mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

Find them all

Find all continuous positive functions, \(f\) on \([0,1]\) such that:
$$\int_0^1 f(x) dx=1\\ \mathrm{and }\int_0^1 xf(x) dx=\alpha\\ \mathrm{and }\int_0^1 x^2f(x) dx=\alpha^2$$

Show answer & extension

Odd and even outputs

Let \(g:\mathbb{N}\times\mathbb{N}\rightarrow\mathbb{N}\) be a function.
This means that \(g\) takes two natural number inputs and gives one natural number output. For example if \(g\) is defined by \(g(n,m)=n+m\) then \(g(3,4)=7\) and \(g(10,2)=12\).
The function \(g(n,m)=n+m\) will give an even output if \(n\) and \(m\) are both odd or both even and an odd output if one is odd and the other is even. This could be summarised in the following table:
\(n\)
oddeven
\(m\)oddevenodd
eoddeven
Using only \(+\) and \(\times\), can you construct functions \(g(n,m)\) which give the following output tables:
\(n\)
oddeven
\(m\)oddoddodd
eoddodd
\(n\)
oddeven
\(m\)oddoddodd
eoddeven
\(n\)
oddeven
\(m\)oddoddodd
eevenodd
\(n\)
oddeven
\(m\)oddoddodd
eeveneven
\(n\)
oddeven
\(m\)oddoddeven
eoddodd
\(n\)
oddeven
\(m\)oddoddeven
eoddeven
\(n\)
oddeven
\(m\)oddoddeven
eevenodd
\(n\)
oddeven
\(m\)oddoddeven
eeveneven
\(n\)
oddeven
\(m\)oddevenodd
eoddodd
\(n\)
oddeven
\(m\)oddevenodd
eoddeven
\(n\)
oddeven
\(m\)oddevenodd
eevenodd
\(n\)
oddeven
\(m\)oddevenodd
eeveneven
\(n\)
oddeven
\(m\)oddeveneven
eoddodd
\(n\)
oddeven
\(m\)oddeveneven
eoddeven
\(n\)
oddeven
\(m\)oddeveneven
eevenodd
\(n\)
oddeven
\(m\)oddeveneven
eeveneven

Show answer & extension

Tags: functions

Bézier curve

A Bézier curve is created as follows:
1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).
2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).
3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).
.
.
.
\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:
$$P_0=\left(0,1\right)$$ $$P_1=\left(0,0\right)$$ $$P_2=\left(1,0\right)$$

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

scales pentagons time christmas proportion percentages perimeter trigonometry factorials addition parabolas range remainders elections fractions geometric mean dates cryptic clues coordinates bases polynomials lines probability triangle numbers clocks crosswords matrices cryptic crossnumbers money partitions calculus grids rectangles volume spheres graphs unit fractions circles decahedra consecutive integers dodecagons ave numbers advent square numbers sequences triangles floors tangents multiples angles crossnumbers odd numbers means regular shapes polygons geometry gerrymandering folding tube maps books sport crossnumber speed dominos chess menace functions division digital clocks differentiation number routes people maths sets irreducible numbers chalkdust crossnumber perfect numbers colouring determinants even numbers albgebra factors hexagons palindromes wordplay planes tiling area rugby symmetry quadratics chocolate sum to infinity squares games balancing pascal's triangle cubics shapes averages median doubling mean logic integration products 2d shapes cube numbers consecutive numbers the only crossnumber expansions combinatorics digital products star numbers taxicab geometry prime numbers square roots surds digits indices shape cards binary dice algebra tournaments axes probabilty 3d shapes quadrilaterals coins sums arrows multiplication complex numbers geometric means ellipses integers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024