mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

Find them all

Find all continuous positive functions, \(f\) on \([0,1]\) such that:
$$\int_0^1 f(x) dx=1\\ \mathrm{and }\int_0^1 xf(x) dx=\alpha\\ \mathrm{and }\int_0^1 x^2f(x) dx=\alpha^2$$

Show answer & extension

Odd and even outputs

Let \(g:\mathbb{N}\times\mathbb{N}\rightarrow\mathbb{N}\) be a function.
This means that \(g\) takes two natural number inputs and gives one natural number output. For example if \(g\) is defined by \(g(n,m)=n+m\) then \(g(3,4)=7\) and \(g(10,2)=12\).
The function \(g(n,m)=n+m\) will give an even output if \(n\) and \(m\) are both odd or both even and an odd output if one is odd and the other is even. This could be summarised in the following table:
\(n\)
oddeven
\(m\)oddevenodd
eoddeven
Using only \(+\) and \(\times\), can you construct functions \(g(n,m)\) which give the following output tables:
\(n\)
oddeven
\(m\)oddoddodd
eoddodd
\(n\)
oddeven
\(m\)oddoddodd
eoddeven
\(n\)
oddeven
\(m\)oddoddodd
eevenodd
\(n\)
oddeven
\(m\)oddoddodd
eeveneven
\(n\)
oddeven
\(m\)oddoddeven
eoddodd
\(n\)
oddeven
\(m\)oddoddeven
eoddeven
\(n\)
oddeven
\(m\)oddoddeven
eevenodd
\(n\)
oddeven
\(m\)oddoddeven
eeveneven
\(n\)
oddeven
\(m\)oddevenodd
eoddodd
\(n\)
oddeven
\(m\)oddevenodd
eoddeven
\(n\)
oddeven
\(m\)oddevenodd
eevenodd
\(n\)
oddeven
\(m\)oddevenodd
eeveneven
\(n\)
oddeven
\(m\)oddeveneven
eoddodd
\(n\)
oddeven
\(m\)oddeveneven
eoddeven
\(n\)
oddeven
\(m\)oddeveneven
eevenodd
\(n\)
oddeven
\(m\)oddeveneven
eeveneven

Show answer & extension

Tags: functions

Bézier curve

A Bézier curve is created as follows:
1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).
2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).
3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).
.
.
.
\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:
$$P_0=\left(0,1\right)$$ $$P_1=\left(0,0\right)$$ $$P_2=\left(1,0\right)$$

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

expansions chalkdust crossnumber digits means folding tube maps doubling percentages the only crossnumber cubics polygons logic unit fractions geometric means chess digital products hexagons digital clocks arrows cards wordplay squares elections multiplication decahedra mean division range 3d shapes calculus geometric mean palindromes coins cube numbers people maths square roots balancing grids algebra dodecagons trigonometry routes money cryptic clues shapes cryptic crossnumbers dice 2d shapes odd numbers remainders dominos polynomials functions ave proportion indices products menace prime numbers factorials tiling games dates consecutive integers addition circles symmetry books rectangles probabilty crossnumbers star numbers integration parabolas multiples matrices ellipses advent colouring fractions speed time complex numbers graphs quadratics coordinates bases tangents averages integers surds crossnumber binary combinatorics shape triangle numbers differentiation even numbers volume tournaments floors consecutive numbers pentagons sets sport median taxicab geometry spheres irreducible numbers partitions quadrilaterals square numbers chocolate determinants christmas perfect numbers triangles lines area sum to infinity planes albgebra regular shapes angles gerrymandering axes sequences sums clocks rugby probability crosswords scales number pascal's triangle geometry perimeter numbers factors

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024