mscroggs.co.uk
mscroggs.co.uk

subscribe

Sunday Afternoon Maths LVII

Archive

Show me a Random Puzzle
 Most Recent Collections 

Tags

time geometry 2d shapes 3d shapes numbers spheres trigonometry complex numbers algebra lines graphs coordinates odd numbers fractions differentiation calculus folding tube maps ellipses triangle numbers money bases triangles squares area square numbers chess probability circles averages speed sport multiples dates factors parabolas functions logic cards games people maths shape prime numbers irreducible numbers probabilty angles proportion dice integration sum to infinity dodecagons hexagons multiplication factorials coins shapes regular shapes colouring grids floors integers rugby crosswords percentages digits sums christmas rectangles clocks menace routes taxicab geometry remainders chalkdust crossnumber palindromes sequences means unit fractions division square roots surds doubling quadratics indices planes volume number partitions ave pascal's triangle mean advent symmetry arrows addition cube numbers star numbers perfect numbers

Archive

Show me a Random Puzzle
▼ show ▼
 Posted on 2016-11-27 

Square Factorials

Source: Woody at Maths Jam
Multiply together the first 100 factorials:
$$1!\times2!\times3!\times...\times100!$$
Find a number, \(n\), such that dividing this product by \(n!\) produces a square number.

Show Answer & Extension

Largest Odd Factors

Pick a number. Call it \(n\). Write down all the numbers from \(n+1\) to \(2n\) (inclusive). For example, if you picked 7, you would write:
$$8,9,10,11,12,13,14$$
Below each number, write down its largest odd factor. Add these factors up. What is the result? Why?

Show Answer

If you enjoyed this puzzle, check out Sunday Afternoon Maths LXII,
puzzles about christmas, or a random puzzle.
© Matthew Scroggs 2018