#### Hide answer & extension

First, look at how many times each number will appear in the product.

$$1!\times2!\times3!\times...\times100!
=1^{100}\times2^{99}\times3^{98}\times...\times100^1$$

Now split the odd and even numbers.

$$=\left[1^{100}\times3^{98}\times...\times99^2\right]\times\left[2^{99}\times4^{97}\times...\times100^1\right]$$

As all the powers in the first bracket are even, the first bracket is a square number.

$$=\left[1^{50}\times3^{49}\times...\times99^1\right]^2\times\left[2^{99}\times4^{97}\times...\times100^1\right]$$

Next, take a factor of two out of each number in the second bracket.

$$=\left[1^{50}\times3^{49}\times...\times99^1\right]^2\times\left[(2\times1)^{99}\times(2\times2)^{97}\times...\times(2\times50)^1\right]$$
$$=\left[1^{50}\times3^{49}\times...\times99^1\right]^2\times2^{99+97+...+1}\left[1^{99}\times2^{97}\times...\times50^1\right]$$
$$=\left[1^{50}\times3^{49}\times...\times99^1\right]^2\times2^{2500}\left[1^{99}\times2^{97}\times...\times50^1\right]$$

The only odd powers involved are now in the last bracket. Dividing by \(50!\) would make each of these powers even, hence the overall number would be square.

$$\frac{1!\times2!\times3!\times...\times100!
}{50!}=\left[1^{50}\times3^{49}\times...\times99^1\right]^2\times2^{2500}\left[1^{98}\times2^{96}\times...\times50^0\right]$$
$$=\left[1^{50}\times3^{49}\times...\times99^1\times2^{1250}\times1^{49}\times2^{48}\times...\times50^0\right]^2$$

#### Extension

For which numbers \(m\) is it possible to find a number \(n\) such that $$\frac{1!\times2!\times...\times m!}{n!}$$ is a square number?