# Sunday Afternoon Maths LIX

## Archive

Show me a Random Puzzle**Most Recent Collections**

#### Sunday Afternoon Maths LXI

XYZ#### Sunday Afternoon Maths LX

Where is Evariste?Bending a Straw

#### Sunday Afternoon Maths LIX

Turning SquaresList of All Puzzles

## Tags

time geometry 2d shapes 3d shapes numbers spheres trigonometry complex numbers algebra lines graphs coordinates odd numbers fractions differentiation calculus folding tube maps ellipses triangle numbers money bases triangles squares area square numbers chess probability circles averages speed sport multiples dates factors parabolas functions logic cards games people maths shape prime numbers irreducible numbers probabilty angles proportion dice integration sum to infinity dodecagons hexagons multiplication factorials coins shapes regular shapes colouring grids floors integers rugby crosswords percentages digits sums rectangles clocks menace routes taxicab geometry remainders chalkdust crossnumber palindromes sequences means unit fractions division square roots surds doubling quadratics indices symmetry planes volume number partitions ave pascal's triangle mean advent arrows addition**Posted on 2017-04-23**

## Square Pairs

Source: Maths Jam

Can you order the integers 1 to 16 so that every pair of adjacent numbers adds to a square number?

For which other numbers \(n\) is it possible to order the integers 1 to \(n\) in such a way?

## Elastic Numbers

*Throughout this puzzle, expressions like \(AB\) will represent the digits of a number, not \(A\) multiplied by \(B\).*

A two-digit number \(AB\) is called

*elastic*if:- \(A\) and \(B\) are both non-zero.
- The numbers \(A0B\), \(A00B\), \(A000B\), ... are all divisible by \(AB\).

There are three elastic numbers. Can you find them?

## Turning Squares

Source: Futility Closet

Each square on a chessboard contains an arrow point up, down, left or right. You start in the bottom left square. Every second you move one square in the direction shown by the arrow in your square. Just after you move, the arrow on the square you moved from rotates 90° clockwise. If an arrow would take you off the edge of the board, you stay in that square (the arrow will still rotate).

You win the game if you reach the top right square of the chessboard. Can I design a starting arrangement of arrows that will prevent you from winning?

If you enjoyed these puzzles, check out Sunday Afternoon Maths LXI,

puzzles about integers, or a random puzzle.

puzzles about integers, or a random puzzle.