Triangle numbers

Let \(T_n\) be the \(n^\mathrm{th}\) triangle number. Find \(n\) such that: $$T_n+T_{n+1}+T_{n+2}+T_{n+3}=T_{n+4}+T_{n+5}$$

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths VI,
puzzles about numbers, or a random puzzle.


Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles


triangle numbers complex numbers perimeter median grids chess coins quadratics unit fractions graphs symmetry cards circles hexagons prime numbers mean division parabolas floors tiling ellipses wordplay games sums area integers triangles 2d shapes rectangles differentiation proportion doubling crossnumbers bases gerrymandering volume dodecagons people maths means odd numbers averages integration cube numbers taxicab geometry planes percentages probabilty books balancing products probability lines the only crossnumber christmas polygons dice sport money range elections functions square numbers colouring 3d shapes addition dominos trigonometry factorials irreducible numbers arrows calculus multiplication fractions perfect numbers numbers chocolate pascal's triangle square roots star numbers logic rugby spheres multiples menace cryptic clues shape chalkdust crossnumber regular shapes digital clocks digits time sum to infinity scales sequences ave indices crossnumber remainders shapes palindromes geometry cryptic crossnumbers surds dates angles squares number crosswords coordinates partitions algebra speed folding tube maps advent routes factors clocks


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020