mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2013-07-24 
A news story on the BBC Website caught my eye this morning. It reported the following "uncanny coincidence" between a Northern Irish baby and a Royal baby:
But both new mothers share the name Catherine, the same birthday - 9 January - and now their sons also share the same birth date.
I decided to work out just how uncanny this is.
The Office for National Statistics states that 729,674 babies are born every year in the UK. This works out at 1,999 babies born each day, assuming that births are uniformly distributed, so there will be approximately 1,998 babies who share Price Nameless's birthday.
So, what is the chance of the mother of one of these babies having the same birthday as Princess Kate? To work this out I used a method similar to that which is used in the birthday "paradox", which tells us that in a group of 23 people there is a more than 50% chance of two people sharing a birthday, but that's another story.
First, we look at one of our 1,998 mothers. The chance that she shares Princess Kate's birthday is 1/365 (ignoring leap days). The chance that she does not share Princess Kate's Birthday is 364/365.
Next we work out the probability that none of our 1,998 mothers shares Princess Kate's birthday. As our mothers' birthdays are independent we can multiply the probabilities together to do this (this is why we are looking at the probability of not sharing a birthday instead of sharing a birthday). Our probability therefore is \(\left(\frac{364}{365}\right)^{1998} = 0.00416314317\).
Back to the original question, we wanted to know the probability that one of our mothers shares Princess Kate's birthday. To calculate this we do take 0.00416314317 away from 1. This gives 0.99583685682 or 99.6%.
There is a 99.6% chance that there is a resident of the UK who shares the same birthday as Princess Kate and had a child on the same day.
Uncanny.
But let's be fair. The mother in our story is also called Kate. So what are the chances of that? In fact, the same method can be followed, working with the probability of having neither the same birthday or name as Princess Kate.
I think it is safe to assume that this would still be considered news-worthy if our non-princess was called Katie, Cate, Cathryn, Katie-Rose or any other name which is commonly shortened to Kate, so I included a number of variations and used this fantastic tool to find the probability of a mother being called Kate. The data only goes back to 1996, but as the name is dropping in popularity, we can assume that before 1996 at least 1.5% of babies were called Kate. Disregarding males, we can estimate that 3% of mothers are called Kate.
If anyone would like the details of the rest of the calculation, please comment on this post and I will include it here. For anyone who trusts me and isn't curious, I eventually found that the probability of none of our 1,998 mothers share the same name and birthday as Princess Kate is 0.84855028964. So the probability of another Kate having a child on the same day and sharing Princess Kate's birthday is 0.15144971035 or 15.1%. Just over one in seven.
So this is as uncanny as anything else which has a probability of one in seven, such as the Royal baby being born on a Monday (uncanny!).

Similar posts

World Cup stickers 2018, pt. 3
World Cup stickers 2018, pt. 2
A bad Puzzle for Today
A 20,000-to-1 baby?

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "x" then "-" then "a" then "x" then "i" then "s" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

cambridge boundary element methods finite element method geogebra nine men's morris dataset gaussian elimination games reddit mathsteroids video games noughts and crosses folding paper christmas manchester science festival manchester frobel stickers golden ratio chebyshev misleading statistics twitter harriss spiral sorting machine learning exponential growth propositional calculus chalkdust magazine data visualisation flexagons accuracy interpolation draughts royal institution tennis london pythagoras geometry binary rhombicuboctahedron bubble bobble rugby determinants final fantasy triangles sound graph theory simultaneous equations preconditioning fractals reuleaux polygons folding tube maps map projections matrix multiplication menace advent calendar graphs sport platonic solids statistics gerry anderson electromagnetic field probability football computational complexity latex craft books palindromes golden spiral captain scarlet news logs big internet math-off matrix of minors quadrilaterals convergence go inverse matrices bodmas approximation ternary coins mathslogicbot matt parker hats pizza cutting sobolev spaces braiding national lottery game show probability curvature cross stitch weather station hexapawn talking maths in public countdown world cup dragon curves error bars light raspberry pi puzzles martin gardner wave scattering ucl signorini conditions tmip matrix of cofactors london underground estimation arithmetic pac-man the aperiodical dates phd programming oeis matrices asteroids weak imposition php polynomials inline code realhats a gamut of games speed european cup game of life christmas card wool javascript people maths squares mathsjam logic bempp python numerical analysis radio 4 data hannah fry royal baby chess plastic ratio trigonometry

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020