mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Blog

 2012-10-06 
This is the first post in a series of posts about tube map folding.
This week, after re-reading chapter two of Alex's Adventures in Numberland (where Alex learns to fold business cards into tetrahedrons, cubes and octahedrons) on the tube, I folded two tube maps into a tetrahedron:
Following this, I folded a cube, an octahedron and an icosahedron:
The tetrahedron, icosahedron and octahedron were all made in the same way, as seen in Numberland: folding the map in two, so that a pair of opposite corners meet, then folding the sides over to make a triangle:
In order to get an equilateral triangle at this point, paper with sides in a ratio of 1:√3 is required. Although it is not exact, the proportions of a tube map are close enough to this to get an almost equilateral triangle. Putting one of these pieces together with a mirror image piece (one where the other two corners were folded together at the start) gives a tetrahedron. The larger solids are obtained by using a larger number of maps.
The cube—also found in Numberland—can me made by placing two tube maps on each other at right angles and folding over the extra length:
Six of these pieces combine to give a cube.
Finally this morning, with a little help from the internet, I folded a dodecahedron, thus completing all the Platonic solids:
To spread the joy of folding tube maps, each time I take the tube, I am going to fold a tetrahedron from two maps and leave it on the maps when I leave the tube. I started this yesterday, leaving a tetrahedron on the maps at South Harrow. In the evening, it was still there:
Do you think it will still be there on Monday morning? How often do you think I will return to find a tetrahedron still there? I will be keeping a tetrahedron diary so we can find out the answers to these most important questions...
This is the first post in a series of posts about tube map folding.
Next post in series
Tube map Platonic solids, pt. 2

Similar posts

Tube map Platonic solids, pt. 3
Tube map Platonic solids, pt. 2
Tube map kaleidocycles
Tube map stellated rhombicuboctahedron

Comments

Comments in green were written by me. Comments in blue were not written by me.
 2017-12-21 
New test comment please ignore
Reply
Matthew
 2015-07-18 
Test comment please ignore
Reply
Matthew
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "j" then "u" then "m" then "p" in the box below (case sensitive):

Archive

Show me a random blog post
 2019 

Dec 2019

Christmas card 2019

Nov 2019

Christmas (2019) is coming!

Sep 2019

A non-converging LaTeX document
TMiP 2019 treasure punt

Jul 2019

Big Internet Math-Off stickers 2019

Jun 2019

Proving a conjecture

Apr 2019

Harriss and other spirals

Mar 2019

realhats

Jan 2019

Christmas (2018) is over
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

light bodmas dataset realhats frobel radio 4 christmas card cambridge arithmetic platonic solids pizza cutting bubble bobble reddit propositional calculus harriss spiral matt parker talking maths in public tmip javascript accuracy stickers final fantasy approximation video games estimation asteroids interpolation wool cross stitch triangles countdown coins ternary manchester science festival braiding folding tube maps mathsteroids inline code oeis manchester craft raspberry pi mathsjam hats news folding paper python misleading statistics chess people maths pythagoras sorting world cup trigonometry noughts and crosses logic hexapawn nine men's morris weather station puzzles dates royal baby polynomials game of life flexagons electromagnetic field rhombicuboctahedron martin gardner games dragon curves statistics fractals palindromes map projections rugby big internet math-off the aperiodical menace captain scarlet plastic ratio christmas machine learning golden ratio binary national lottery reuleaux polygons graph theory programming curvature sound london draughts books twitter error bars chebyshev speed tennis go gerry anderson data london underground php advent calendar a gamut of games probability european cup game show probability golden spiral sport mathslogicbot pac-man latex football chalkdust magazine geometry

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2019