# Blog

## Archive

Show me a random blog post**2019**

**2018**

**2017**

**2016**

**2015**

**2014**

**2013**

**2012**

## Tags

folding paper folding tube maps london underground platonic solids london rhombicuboctahedron raspberry pi weather station programming python php inline code news royal baby probability game show probability christmas flexagons frobel coins reuleaux polygons countdown football world cup sport stickers tennis braiding craft wool electromagnetic field people maths trigonometry logic propositional calculus twitter mathslogicbot oeis matt parker pac-man graph theory video games games chalkdust magazine menace machine learning javascript martin gardner noughts and crosses reddit national lottery rugby puzzles game of life dragon curves fractals pythagoras geometry triangles european cup dates palindromes christmas card ternary bubble bobble asteroids final fantasy curvature binary arithmetic bodmas statistics error bars estimation accuracy misleading statistics pizza cutting captain scarlet gerry anderson light sound speed manchester science festival manchester dataset a gamut of games hexapawn nine men's morris draughts chess go radio 4 data map projections aperiodical big internet math-off sorting polynomials approximation interpolation chebyshev books cross stitch**2018-12-08**

## Christmas card 2018

Just like last year and the year before, TD and I spent some time in November this year designing a Chalkdust puzzle Christmas card.

The card looks boring at first glance, but contains 10 puzzles. By splitting the answers into pairs of digits, then drawing lines between the dots on the cover for each pair of digits (eg if an answer is 201304, draw a line from dot 20 to dot 13 and another line from dot 13 to dot 4), you will reveal a Christmas themed picture. Colouring the region of the card labelled R red or orange will make this picture even nicer.

If you want to try the card yourself, you can download this pdf. Alternatively, you can find the puzzles below and type the answers in the boxes. The answers will be automatically be split into pairs of digits, lines will be drawn between the pairs, and the red region will be coloured...

If you enjoy these puzzles, then you'll almost certainly enjoy this year's puzzle Advent calendar.

1. | What is the smallest four digit number whose digits add up to 6? | Answer |

2. | What is the length of the hypotenuse of a right angled triangle whose two shorter sides have lengths 152,560 and 114,420? | Answer |

3. | What is the lowest common multiple of 1346 and 196? | Answer |

4. | What is the sum of all the odd numbers between 0 and 698? | Answer |

5. | How many numbers are there between 100 and 10,000 that contain no 0, 1, 2, or 3? | Answer |

6. | How many factors (including 1 and the number itself) does the number \(2^{13}\times3^{19}\times5^9\times7^{39}\) have? | Answer |

7. | In a book with pages numbered from 1 to 16,020,308, what do the two page numbers on the centre spread add up to? | Answer |

8. | You think of a number, then make a second number by removing one of its digits. The sum of these two numbers is 18,745,225. What was your first number? | Answer |

9. | What is the largest number that cannot be written as \(13a+119b\), where \(a\) and \(b\) are positive integers or 0? | Answer |

10. | You start at the point (0,0) and are allowed to move one unit up or one unit right. How many different paths can you take to get to the point (7,6)? | Answer |

### Similar posts

Christmas card 2017 | Christmas card 2016 | Christmas (2018) is over | Christmas (2018) is coming! |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**2018-12-16**

Carmel

**2018-12-14**

SueM

**2018-12-14**

Heather

**2018-12-10**

*3a + 10b*). This helped me to see what I had to do more generally.

Noah

**Add a Comment**

**2017-12-18**

## Christmas card 2017

Just like last year, TD and I spent some time in November this year designing a puzzle Christmas card for Chalkdust.

The card looks boring at first glance, but contains 10 puzzles. Converting the answers to base 3, writing them in the boxes on the front, then colouring the 1s black and 2s orange will reveal a Christmassy picture.

If you want to try the card yourself, you can download this pdf. Alternatively, you can find the puzzles below and type the answers in the boxes. The answers will be automatically converted to base 3 and coloured...

# | Answer (base 10) | Answer (base 3) | ||||||||

1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||

2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||

3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||

4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||

5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||

6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||

7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||

8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||

9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||

10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

- In a book with 116 pages, what do the page numbers of the middle two pages add up to?
- What is the largest number that cannot be written in the form \(14n+29m\), where \(n\) and \(m\) are non-negative integers?
- How many factors does the number \(2^6\times3^{12}\times5^2\) have?
- How many squares (of any size) are there in a \(15\times14\) grid of squares?
- You take a number and make a second number by removing the units digit. The sum of these two numbers is 1103. What was your first number?
- What is the only three-digit number that is equal to a square number multiplied by the reverse of the same square number? (The reverse cannot start with 0.)
- What is the largest three-digit number that is equal to a number multiplied by the reverse of the same number? (The reverse cannot start with 0.)
- What is the mean of the answers to questions 6, 7 and 8?
- How many numbers are there between 0 and 100,000 that do not contain the digits 0, 1, 2, 3, 4, 5, or 6?
- What is the lowest common multiple of 52 and 1066?

### Similar posts

Christmas card 2016 | Christmas card 2018 | Christmas (2018) is over | Christmas (2018) is coming! |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**2019-01-04**

**10,000**and 100,000 that do not contain the digits 0, 1, 2, 3, 4, 5, or 6.

Matthew

**2019-01-04**

Is it possible that the question 9 is no correct?

I get a penguin with perfect simetrie except at answer 9 : 0100000 that breaks the simetry.

Is it correct or a mistake in my answer?

Thx

Jose

**2018-01-01**

Lewis

**2017-12-28**

C

**2017-12-23**

NHH

**Add a Comment**

**2017-11-14**

## MENACE at Manchester Science Festival

A few weeks ago, I took the copy of MENACE that I built to Manchester Science Festival, where it played around 300 games against the public while learning to play Noughts and Crosses. The group of us operating MENACE for the weekend included Matt Parker, who made two videos about it. Special thanks go to Matt, plus
Katie Steckles,
Alison Clarke,
Andrew Taylor,
Ashley Frankland,
David Williams,
Paul Taylor,
Sam Headleand,
Trent Burton, and
Zoe Griffiths for helping to operate MENACE for the weekend.

As my original post about MENACE explains in more detail, MENACE is a machine built from 304 matchboxes that learns to play Noughts and Crosses. Each box displays a possible position that the machine can face and contains coloured beads that correspond to the moves it could make. At the end of each game, beads are added or removed depending on the outcome to teach MENACE to play better.

### Saturday

On Saturday, MENACE was set up with 8 beads of each colour in the first move box; 3 of each colour in the second move boxes; 2 of each colour in third move boxes; and 1 of each colour in the fourth move boxes. I had only included one copy of moves that are the same due to symmetry.

The plot below shows the number of beads in MENACE's first box as the day progressed.

Originally, we were planning to let MENACE learn over the course of both days, but it learned more quickly than we had expected on Saturday, so we reset is on Sunday, but set it up slightly differently. On Sunday, MENACE was set up with 4 beads of each colour in the first move box; 3 of each colour in the second move boxes; 2 of each colour in third move boxes; and 1 of each colour in the fourth move boxes. This time, we left all the beads in the boxes and didn't remove any due to symmetry.

The plot below shows the number of beads in MENACE's first box as the day progressed.

You can download the full set of data that we collected over the weekend here. This includes the first two moves and outcomes of all the games over the two days, plus the number of beads in each box at the end of each day. If you do something interesting (or non-interesting) with the data, let me know!

### Similar posts

MENACE | Building MENACEs for other games | MENACE in fiction | The Mathematical Games of Martin Gardner |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**2018-11-16**

g0mrb

**2018-02-14**

Lambert

**2017-11-22**

Ian

**2017-11-17**

Russ

**Add a Comment**

**2017-03-08**

## Dragon curves II

This post appeared in issue 05 of

*Chalkdust*. I strongly recommend reading the rest of*Chalkdust*.Take a long strip of paper. Fold it in half in the same direction a few times. Unfold it and look at the shape the edge of the paper
makes. If you folded the paper \(n\) times, then the edge will make an order \(n\) dragon curve, so called because it faintly resembles a
dragon. Each of the curves shown on the cover of issue 05 of

*Chalkdust*is an order 10 dragon curve.The dragon curves on the cover show that it is possible to tile the entire plane with copies of dragon curves of the same order. If any
readers are looking for an excellent way to tile a bathroom, I recommend getting some dragon curve-shaped tiles made.

An order \(n\) dragon curve can be made by joining two order \(n-1\) dragon curves with a 90° angle between their tails. Therefore, by
taking the cover's tiling of the plane with order 10 dragon curves, we may join them into pairs to get a tiling with order 11 dragon
curves. We could repeat this to get tilings with order 12, 13, and so on... If we were to repeat this

*ad infinitum*we would arrive at the conclusion that an order \(\infty\) dragon curve will cover the entire plane without crossing itself. In other words, an order \(\infty\) dragon curve is a space-filling curve.Like so many other interesting bits of recreational maths, dragon curves were popularised by Martin Gardner in one of his

*Mathematical Games*columns in*Scientific American*. In this column, it was noted that the endpoints of dragon curves of different orders (all starting at the same point) lie on a logarithmic spiral. This can be seen in the diagram below. Although many of their properties have been known for a long time and are well studied, dragon curves continue to appear in new and
interesting places. At last year's Maths Jam conference, Paul Taylor gave a talk about my favourite surprise occurrence of
a dragon.

Normally when we write numbers, we write them in base ten, with the digits in the number representing (from right to left) ones, tens,
hundreds, thousands, etc. Many readers will be familiar with binary numbers (base two), where the powers of two are used in the place of
powers of ten, so the digits represent ones, twos, fours, eights, etc.

In his talk, Paul suggested looking at numbers in base -1+i (where i is the square root of -1; you can find more adventures of i here) using the digits 0 and 1. From right to left, the columns of numbers in this
base have values 1, -1+i, -2i, 2+2i, -4, etc. The first 11 numbers in this base are shown below.

Number in base -1+i | Complex number |

0 | 0 |

1 | 1 |

10 | -1+i |

11 | (-1+i)+(1)=i |

100 | -2i |

101 | (-2i)+(1)=1-2i |

110 | (-2i)+(-1+i)=-1-i |

111 | (-2i)+(-1+i)+(1)=-i |

1000 | 2+2i |

1001 | (2+2i)+(1)=3+2i |

1010 | (2+2i)+(-1+i)=1+3i |

Complex numbers are often drawn on an Argand diagram: the real part of the number is plotted on the horizontal axis and the imaginary part
on the vertical axis. The diagram to the left shows the numbers of ten digits or less in base -1+i on an Argand diagram. The points form
an order 10 dragon curve! In fact, plotting numbers of \(n\) digits or less will draw an order \(n\) dragon curve.

Brilliantly, we may now use known properties of dragon curves to discover properties of base -1+i. A level \(\infty\) dragon curve covers
the entire plane without intersecting itself: therefore every Gaussian integer (a number of the form \(a+\text{i} b\) where \(a\) and
\(b\) are integers) has a unique representation in base -1+i. The endpoints of dragon curves lie on a logarithmic spiral: therefore
numbers of the form \((-1+\text{i})^n\), where \(n\) is an integer, lie on a logarithmic spiral in the complex plane.

If you'd like to play with some dragon curves, you can download the Python code used
to make the pictures here.

### Similar posts

Dragon curves | MENACE at Manchester Science Festival | The Mathematical Games of Martin Gardner | MENACE |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**Add a Comment**

**2017-01-13**

## Is MEDUSA the new BODMAS?

I wrote this post with, and after much discussion with Adam Townsend. It also appeared on the Chalkdust Magazine blog.

Recently, Colin "IceCol" Beveridge blogged about something that's been irking him for a while: those annoying social media posts that tell you to work out a sum, such as \(3-3\times6+2\), and state that only $n$% of people will get it right (where \(n\) is quite small). Or as he calls it "fake maths".

This got me thinking about everyone's least favourite primary school acronym: BODMAS (sometimes known as BIDMAS, or PEMDAS if you're American). As I'm sure you've been trying to forget, BODMAS stands for "

**B**rackets, (to the power)**O**f,**D**ivision,**M**ultiplication,**A**ddition,**S**ubtraction" and tells you in which order the operations should be performed.Now, I agree that we all need to do operations in the same order (just imagine trying to explain your working out to someone who uses

*BADSOM*!) but BODMAS isn't the order mathematicians use. It's simply wrong. Take the sum \(4-3+1\) as an example. Anyone can tell you that the answer is 2. But BODMAS begs to differ: addition comes first, giving 0!The problem here is that in reality, we treat addition and subtraction as equally important, so sums involving just these two operations are calculated from left-to-right. This caveat is quite a lot more to remember on top of BODMAS, but there's actually no need: Doing all the subtractions before additions will always give you the same answer as going from left-to-right. The same applies to division and multiplication, but luckily these two are in the correct order already in BODMAS (but no luck if you're using PEMDAS).

So instead of BODMAS, we should be using

*BODMSA*. But that's unpronounceable, so instead we suggest that from now on you use**MEDUSA**. That's right,**MEDUSA**:**M**abano (*brackets*in Swahili)**E**xponentiation**D**ivision**U**kubuyabuyelela (*multiplication*in Zulu)**S**ubtraction**A**ddition

This is big news. MEDUSA vs BODMAS could be this year's pi vs tau... Although it's not actually the biggest issue when considering sums like \(3-3\times6+2\).

The real problem with \(3-3\times6+2\) is that it is written in a purposefully confusing and ambiguous order. Compare the following sums:

$$3-3\times6+2$$ $$3+2-3\times6$$ $$3+2-(3\times6)$$
In the latter two, it is much harder to make a mistake in the order of operations, because the correct order is much closer to normal left-to-right reading order, helping the reader to avoid common mistakes. Good mathematics is about good communication, not tricking people. This is why questions like this are "fake maths": real mathematicians would never ask them. If we take the time to write clearly, then I bet more than \(n\)% of people will be able get the correct answer.

### Similar posts

Christmas card 2018 | Christmas card 2017 | MENACE at Manchester Science Festival | Dragon curves II |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**2017-11-27**

Brodaha

**2017-11-15**

tiny

**2017-11-15**

Blan

**Add a Comment**

2018-12-17