# Blog

## Archive

Show me a Random Blog Post**2017**

### Nov 2017

MENACE at Manchester Science Festival### Jun 2017

Big Ben Strikes Again### Mar 2017

The End of Coins of Constant WidthDragon Curves II

### Feb 2017

The Importance of Estimation Error### Jan 2017

Is MEDUSA the New BODMAS?**2016**

**2015**

**2014**

**2013**

**2012**

## Tags

folding paper folding tube maps london underground platonic solids london rhombicuboctahedron raspberry pi weather station programming python php inline code news royal baby probability game show probability christmas flexagons frobel coins reuleaux polygons countdown football world cup sport stickers tennis braiding craft wool emf camp people maths trigonometry logic propositional calculus twitter mathslogicbot oeis matt parker pac-man graph theory video games games chalkdust magazine menace machine learning javascript martin gardner reddit national lottery rugby puzzles advent game of life dragon curves fractals pythagoras geometry triangles european cup dates palindromes chalkdust christmas card bubble bobble asteroids final fantasy curvature binary arithmetic bodmas statistics error bars estimation accuracy misleading statistics pizza cutting captain scarlet gerry anderson light sound speed manchester science festival manchester**2017-11-14**

## MENACE at Manchester Science Festival

A few weeks ago, I took the copy of MENACE that I built to Manchester Science Festival, where it played around 300 games against the public while learning to play Noughts and Crosses. The group of us operating MENACE for the weekend included Matt Parker, who made two videos about it. Special thanks go to Matt, plus
Katie Steckles,
Alison Clarke,
Andrew Taylor,
Ashley Frankland,
David Williams,
Paul Taylor,
Sam Headleand,
Trent Burton, and
Zoe Griffiths for helping to operate MENACE for the weekend.

As my original post about MENACE explains in more detail, MENACE is a machine built from 304 matchboxes that learns to play Noughts and Crosses. Each box displays a possible position that the machine can face and contains coloured beads that correspond to the moves it could make. At the end of each game, beads are added or removed depending on the outcome to teach MENACE to play better.

### Saturday

On Saturday, MENACE was set up with 8 beads of each colour in the first move box; 3 of each colour in the second move boxes; 2 of each colour in third move boxes; and 1 of each colour in the fourth move boxes. I had only included one copy of moves that are the same due to symmetry.

The plot below shows the number of beads in MENACE's first box as the day progressed.

### Sunday

Originally, we were planning to let MENACE learn over the course of both days, but it learned more quickly than we had expected on Saturday, so we reset is on Sunday, but set it up slightly differently. On Sunday, MENACE was set up with 4 beads of each colour in the first move box; 3 of each colour in the second move boxes; 2 of each colour in third move boxes; and 1 of each colour in the fourth move boxes. This time, we left all the beads in the boxes and didn't remove any due to symmetry.

The plot below shows the number of beads in MENACE's first box as the day progressed.

### The Data

You can download the full set of data that we collected over the weekend here. This includes the first two moves and outcomes of all the games over the two days, plus the number of beads in each box at the end of each day. If you do something interesting (or non-interesting) with the data, let me know!

### Similar Posts

MENACE | The Mathematical Games of Martin Gardner | Dragon Curves II | Making Names in Life |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**Add a Comment**

**2015-03-24**

## Tube Map Stellated Rhombicuboctahedron

A while ago, I made this (a stellated rhombicuboctahedron):

Here are some hastily typed instructions for
Matt Parker, who is making one
at this month's Maths Jam. Other people are
welcome to follow these instructions too.

### You Will Need

- 48 tube maps
- glue

### Making a Module

First, take a tube map and fold the cover over. This will ensure that your
shape will have tube (map and not index) on the outside and you will have
pages to tuck your tabs between later.

Now fold one corner diagonally across to another corner. It does not matter
which diagonal you chose for the first piece but after this all following pieces
must be the same as the first.

Now fold the overlapping bit back over the top.

Turn it over and fold this overlap over too.

You have made one module.

You will need 48 of these and some glue.

### Putting it together

By slotting three or four of these modules together, you can make a
pyramid with a triangle or square as its base.

A stellated rhombicuboctahedron is a rhombicuboctahedron with a pyramid, or
stellation on each face. In other words, you now need to build a
rhombicuboctahedron with the bases of pyramids like these. A rhombicuboctahedron
looks like this:

en.wiki User Cyp, CC BY-SA 3.0

More usefully, its net looks like this:

To build a stellated rhombicuboctahedron, make this net, but with each shape
as the base of a pyramid. This is what it will look like 6/48 tube maps in:

If you make on of these, please tweet me a photo so I can see it!

### Similar Posts

Tube Map Platonic Solids, pt. 2 | Tube Map Kaleidocycles | Tube Map Platonic Solids, pt. 3 | Electromagnetic Field Talk |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**2017-10-14**

Roberts, David

**Add a Comment**

2017-11-17